S. Bahalkar, Pranjali
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

An efficient course recommendation system for higher education students using machine learning techniques M. Arcinas, Myla; Meenakshi, Meenakshi; S. Bahalkar, Pranjali; Bhaturkar, Deepali; Lalar, Sachin; Pitambar Rane, Kantilal; Garg, Shaifali; Omarov, Batyrkhan; Raghuvanshi, Abhishek
Bulletin of Electrical Engineering and Informatics Vol 14, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i2.7711

Abstract

Education institutions and teachers are in desperate need of automated, non-intrusive means of getting student feedback that would allow them to better understand the learning cycle and assess the success of course design. Students would benefit from a framework that intelligently guides their actions and provides exercises or resources to support and enhance their learning. The recommender system framework is a software agent that learns the user's preferences through a variety of channels and then utilizes that knowledge to provide product suggestions. A recommendation engine considers all potential user interests as background information, uses that knowledge to produce convincing recommendations, and then returns those ideas to the user. This article presents a feature selection and machine learning based course recommendation system for higher education students. principal component analysis (PCA) algorithm is used for feature selection. AdaBoost, k nearest neighbour (KNN), and Naïve Bayes algorithms are used to classify and predict student data. It is found that the AdaBoost algorithm is having better accuracy and F1 score for course recommendation to students. PCA AdaBoost is achieving an accuracy of 99.5%.