Claim Missing Document
Check
Articles

Found 1 Documents
Search

Klasifikasi Review Customer Di E-Commerce Bukalapak Menggunakan Metode Support Vector Machine (SVM) Chrisdiyanti, Ivania Nonita; Fa'rifah, Riska Yanua; Pratiwi, Oktariani Nurul
eProceedings of Engineering Vol. 10 No. 3 (2023): Juni 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak-Bukalapak menempati urutan ketiga dalam top 10 e-commerce Indonesia, tujuan pemeringkatan tersebut yaitu agar pihak Bukalapak dapat meningkatkan kualitas dan kuantitas layanannya. Mengklasifikasi review dari customer Bukalapak yang terlalu banyak membutuhkan waktu yang lama jika dilakukan dengan cara manual. Dibutuhkan suatu metode yang dapat mengklasifikasikan customer review. Metode yang digunakan untuk mengkasifikasikan review adalah Support Vector Machine. Review akan diklasifikasi menjadi dua jenis yaitu positif dan negatif review. Tahapan untuk melakukan klasifikasi pada penelitian ini adalah preprocessing data, ekstraksi fitur dengan TF-IDF, analisis SVM, dan evaluasi.Terdapat 3 skenario yang digunakan dalam penelitian ini, yaitu perbandingan 60:40, 70:30, dan 80:20. Hasil klasifikasi dengan SVM dan fungsi kernel linier pada data training menunjukkan bahwa ketiga rasio mempunyai akurasi dari model terbaik yang dibentuk oleh SVM adalah rasio 60:40. Evaluasi dari model terbaik dari SVM didapatkan akurasi sebesar 85%, Recall sebesar 79%, Precision 89%, dan F1-Score sebesar 84%. Hasil dari K-Fold Cross Validation dengan 10 Fold menunjukkan hasil yang tidak jauh berbeda dari evaluasi yaitu rata-rata sebesar 84%. Hasil klasifikasi kategori positif dapat dijadikan acuan untuk mempertahankan kualitas layanan dan hasil klasifikasi negatif dapat digunakan sebagai bahan evaluasi dalam meningkatkan layanan di Bukalapak.Kata kunci- customer review klasifikasi, SVM, kernel linear