Claim Missing Document
Check
Articles

Found 1 Documents
Search

Deteksi Api pada Video menggunakan Metode Multi-Feature Fusion dan CNN Maruanaya, Farhan Bary; Sthevanie, Febryanty; Ramadhani, Kurniawan Nur
eProceedings of Engineering Vol. 10 No. 4 (2023): Agustus 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kebakaran merupakan bencana yang memiliki dampak buruk bagi lingkungan dan juga menyebabkan kerugian yang signifikan terhadap harta benda serta kehidupan manusia. Deteksi api dengan perangkat sensor memiliki kelemahan di mana api harus berada dalam area tertentu untuk dapat memicu alarm. Pe- manfaatan computer vision untuk mendeteksi api dalam video menunjukan performa yang lebih baik dari pada deteksi menggunakan perangkat sensor. Deteksi api dengan computer vision memanfaatkan karak- teristik api seperti warna, gerakan dan perpindahan tempat. Karakter warna api menunjukan performa yang lebih baik dibandingkan dengan karakter lainnya, namun masih memiliki false positive yang tinggi sa- at ada objek yang memiliki warna menyerupai warna api. Pemanfaatan deep learning untuk menggantikan ekplorasi karakteristik api telah diteliti dan mampu menghasilkan prediksi yang lebih baik. Penelitian ini mencoba menggabungkan metode deteksi api dengan karakteristik gerak dan warna (multi-feature fu- sion) dengan metode deep learning CNN. Sistem yang dibangun memiliki akurasi 96,67% saat training dan mampu mengurangi deteksi false positive dari multifeature fusion.Kata kunci—multi-feature fusion, CNN, deteksi api, computer vision, deteksi warna, deteksi gerak