Claim Missing Document
Check
Articles

Found 1 Documents
Search

PREDIKSI DIABETES: ANALISIS KOMPREHENSIF DENGAN KLASIFIKASI NAÏVE BAYES DAN INTEGRASI RAPIDMINER Muttaqin, Aji; Wahyuni, Tantri
SEMINAR TEKNOLOGI MAJALENGKA (STIMA) Vol 9 (2025): Seminar Teknologi Majalengka (STIMA) 9.0 Tahun 2025
Publisher : Universitas Majalengka

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This research explores diabetes prediction using a classification method by applying the Naive Bayes algorithm and utilizing the RapidMiner application. Using a clinical dataset that includes parameters such as glucose levels, body mass index, and blood pressure, a predictive model was developed and evaluated with an efficient data processing approach via RapidMiner. Experiments show that this model provides accurate predictions regarding diabetes risk. These findings can support the implementation of practical solutions in the early diagnosis of diabetes.