Nataliani, Yessica
Universitas Kristen Satya Wacana

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Prediksi Pergerakan Harga Saham Bank Mandiri Menggunakan Metode Support Vector Regression dan Algoritma Grid Search Samuelly, Francesco Totti; Nataliani, Yessica
Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Vol 14, No 3: Desember 2025 (Naskah Accepted)
Publisher : STMIK Banjarbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35889/jutisi.v14i3.3206

Abstract

The volatile nature of stock price movements poses a major challenge for investors in making accurate investment decisions. This study aims to predict the stock price movement of PT. Bank Mandiri (Persero) Tbk [BMRI] using Support Vector Regression (SVR) optimized through the Grid Search algorithm. The dataset consists of daily stock prices from August 2020 to August 2025, including open, high, low, close, adjusted close, and trading volume. The research process involves data collection, preprocessing (cleaning, feature selection, normalization), splitting into training and testing sets, parameter optimization using Grid Search with Leave-One-Out Cross Validation (LOOCV), model training, and evaluation with R², MSE, and RMSE. The results show that the SVR model with a linear kernel, C = 1 and epsilon = 0.01, achieved the best performance, with high accuracy (R² = 0.9991 on training data and R² = 0.9976 on testing data). These findings confirm the effectiveness of Grid Search–based SVR in predicting stock prices and supporting investment decision-making.Keywords: Stock Price Prediction; Support Vector Regression; Grid Search; Bank Mandiri AbstrakPergerakan harga saham yang fluktuatif menjadi tantangan utama bagi investor dalam menentukan strategi investasi yang tepat. Penelitian ini bertujuan memprediksi pergerakan harga saham PT. Bank Mandiri (Persero) Tbk [BMRI] dengan metode Support Vector Regression (SVR) yang dioptimalkan menggunakan algoritma Grid Search. Data yang digunakan berupa harga saham harian periode Agustus 2020–Agustus 2025, mencakup variabel open, high, low, close, adjusted close, dan volume. Tahapan penelitian meliputi pengumpulan data, pra-pemrosesan (pembersihan, seleksi fitur, normalisasi), pembagian data latih dan uji, optimasi parameter dengan Grid Search berbasis Leave-One-Out Cross Validation (LOOCV), pelatihan model, serta evaluasi dengan R², MSE, dan RMSE. Hasil penelitian menunjukkan SVR dengan kernel linear, parameter C = 1 dan epsilon = 0,01 memberikan performa terbaik dengan akurasi tinggi (R² = 0,9991 pada data latih dan R² = 0,9976 pada data uji). Temuan ini menegaskan efektivitas SVR berbasis Grid Search dalam memprediksi harga saham dan mendukung pengambilan keputusan investasi. 
Prediksi Keberhasilan Studi Mahasiswa Menggunakan Metode Iterative Dichotomiser 3 Gea, Ester; Nataliani, Yessica
Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Vol 14, No 3: Desember 2025
Publisher : STMIK Banjarbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35889/jutisi.v14i3.3146

Abstract

Student academic success is an important indicator in evaluating the quality of higher education in Indonesia. This study aims to predict student academic success based on several variables, such as second-year GPA, number of credits passed, and student's province of origin, using the Iterative Dichotomiser 3 (ID3) algorithm. The data used were 650 graduates of the Information Systems Department of the Faculty of Information Technology, Satya Wacana Christian University, from 2013 to 2017. The ID3 classification results indicate that second-year GPA is the most significant attribute in determining academic success, while province of origin also influences the likelihood of students graduating or failing. Model evaluation using a confusion matrix yielded an accuracy of 85.38%, a precision of 88.8%, a recall of 89.8%, and F-measure of 89.3. These findings demonstrate that the ID3 method can be used in predicting student academic success.Keywords: Academic success; Student; Prediction; Iterative Dichotomiser 3 AbstrakKeberhasilan studi mahasiswa merupakan indikator penting dalam mengevaluasi kualitas pendidikan perguruan tinggi di Indonesia. Penelitian ini bertujuan untuk memprediksi keberhasilan studi mahasiswa berdasarkan sejumlah variabel seperti IPK tahun kedua, jumlah SKS lulus, dan provinsi asal mahasiswa dengan algoritma Iterative Dichotomiser 3 (ID3). Data yang digunakan berasal dari lulusan Fakultas Teknologi Informasi Program Studi Sistem Informasi Universitas Kristen Satya Wacana (UKSW) tahun 2013–2017 sebanyak 650 mahasiswa. Hasil klasifikasi ID3 menunjukkan bahwa IPK tahun kedua merupakan atribut paling signifikan dalam menentukan keberhasilan studi, sedangkan provinsi asal juga berpengaruh terhadap kecenderungan kelulusan atau kegagalan mahasiswa. Evaluasi model dilakukan menggunakan confusion matrix, hasilnya menunjukkan akurasi sebesar 85.38%, precision sebesar 88.8%, recall sebesar 89.8% dan F-measure sebesar 89.3%. Temuan ini menunjukkan bahwa metode ID3 dapat digunakan dalam memprediksi keberhasilan studi mahasiswa.