Claim Missing Document
Check
Articles

Found 1 Documents
Search

Optimalisasi Peringkasan Artikel Teks Bahasa Indonesia dengan Kombinasi TextRank dan Graph Neural Network Sederhana Syatria, Muhammad Rifqi; Mulyana, Dadang Iskandar
Jurnal JTIK (Jurnal Teknologi Informasi dan Komunikasi) Vol 10 No 1 (2026): JANUARY 2026
Publisher : Lembaga Otonom Lembaga Informasi dan Riset Indonesia (KITA INFO dan RISET)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jtik.v10i1.5247

Abstract

The delivery of digital information in Indonesian-language news presents challenges in efficiently capturing the core information. This study proposes a combination of the TextRank algorithm and a simple Graph Neural Network (GNN) to improve the quality of automatic text summarization. TextRank is used to construct a sentence graph based on TF-IDF similarity and cosine similarity, followed by training a SimpleGNN model to optimize sentence scores. Evaluations were conducted on 1,000 articles from the Liputan6 dataset using the ROUGE metric (ROUGE-1, ROUGE-2, and ROUGE-L). The results show that this combined method improves performance compared to pure TextRank, especially in capturing semantic relationships between sentences. This study demonstrates that the integration of a simple GNN can enrich representations in graphs and provide more informative and contextual summaries.