Artamma, Chanan
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

L2IC and MobileViT-XXS for BISINDO Alphabet Recognition Artamma, Chanan; Rahardi, Majid
Journal of Applied Informatics and Computing Vol. 9 No. 6 (2025): December 2025
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v9i6.11575

Abstract

This study proposes a Landmark-to-Image Conversion (L2IC) approach integrated with the MobileViT-XXS architecture for Indonesian Sign Language (BISINDO) alphabet recognition. The method converts 42 hand keypoints, extracted using MediaPipe Hands into normalized 224×224 grayscale images to capture spatial hand patterns more effectively. These L2IC representations are then used as input to the MobileViT-XXS model, trained for 30 epochs with a learning rate of 0.001. Experimental results show that the model achieves an accuracy and Macro F1-Score of 97.98%, outperforming baseline approaches using raw RGB images and MLP-based classification on numerical keypoints. While the model demonstrates strong performance in controlled offline experiments, further evaluation is required to assess its robustness under real-world dynamic BISINDO usage and deployment on resource-limited devices. These findings indicate that the L2IC representation effectively captures essential spatial information, contributing to high recognition accuracy in static BISINDO hand gesture classification.