El-Sheikhi, Farag Ali
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Nonlinear excitation control of multimachine systems via the invariant-set design Soliman, Hisham M.; Bayoumi, Ehab H. E.; El-Sheikhi, Farag Ali; Salem, Fawzan
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 4: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i4.pp2332-2341

Abstract

Power grids are inherently vulnerable to many uncertainties. All power networks are prone to instability because of the uncertainties inherent in the operation of power systems. Rotor-angle instability is a challenging issue, and if not properly managed, could give rise to cascading failures and even blackouts. This paper addresses the generator excitation system’s state feedback sliding mode control (SMC). The global system is divided into multiple subsystems to achieve decentralized control. A disturbance is defined as the influence of the system as a whole on a specific subsystem. The state-feedback controller is to be designed taking into account the disturbance attenuation level, ensuring the closed-loop system's asymptotic stability. The SMC designing algorithm is described; it is based on precisely determining the sliding surface utilizing the invariant-set (ellipsoid) technique. The control structure ensures that mismatched disturbances in power systems have little impact on the system trajectory in the sliding mode. Moreover, the proposed controllers are represented in this paper using linear matrix inequalities (LMIs) and the Lyapunov theory approach. Finally, a multi-machine model is implemented to demonstrate the success of the suggested approach, and a comparison between the proposed SMC and the conventional one demonstrates its superiority.