Fajardo-Avalos, Jesús
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Classification algorithm with artificial intelligence for the diagnostic process of obstructive sleep apnea Ventura-Tecco, Jehil; Fajardo-Avalos, Jesús; Cabanillas-Carbonell, Michael
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i6.pp4520-4532

Abstract

Obstructive sleep apnea (OSA) is a disease that affects millions of people worldwide, and a large proportion of them remain undiagnosed due to the high cost of polysomnography (PSG) tests. For this reason, it is crucial to develop affordable diagnostic tools to facilitate early detection of this condition. This study aims to analyze how an artificial intelligence (AI) based classification algorithm impacts the diagnostic process of OSA in Lima, Peru. The algorithm was developed following the Kanban methodology, which guaranteed an efficient and transparent follow-up during the development cycle, which is key in the medical context where software quality and traceability are fundamental. A decision tree (DT) was used for diagnosis and classification, employing a training dataset provided by the National Sleep Research Resource (NSRR), from which six relevant attributes were selected for analysis. The research results indicated that, although the improvement in clinical diagnostic accuracy was minimal at 10.81%, positive results were obtained in other aspects: diagnostic time was significantly reduced by 28.17%, and the number of tests required decreased by 24.07%.