Penelitian ini mengkaji pengaruh suhu proses ekstrusi terhadap evolusi mikrostruktur/rekristalisasi, serta sifat mekanik paduan aluminium AA6061 melalui telaah literatur, analisis mikrostruktur, dan simulasi numerik Finite Element Method (FEM). Tiga sumber utama dianalisis, mencakup proses ekstrusi chip AA6061 komposit AA6061 RHA hasil solid-state recycling. Hasil studi menunjukkan bahwa ekstrusi pada suhu rendah didominasi oleh strain hardening yang meningkatkan kekuatan namun menurunkan keuletan dan menyebabkan ikatan antar-partikel kurang optimal. Sebaliknya, ekstrusi panas pada rentang 450-550°C memicu rekristalisasi dinamis yang menghasilkan butir halus, peningkatan fraksi batas butir sudut tinggi, serta distribusi mikrostruktur yang lebih homogen. Temuan ini diperkuat oleh simulasi FEM yang menunjukkan penurunan tegangan alir dan aliran logam yang lebih seragam pada suhu 500°C dengan kecepatan ram 1–2 mm/s, sehingga meningkatkan kualitas bonding antar-chip. Peningkatan sifat mekanik berupa kenaikan kekerasan, kekuatan tarik, ketahanan aus, dan umur lelah dilaporkan pada seluruh studi berbasis ekstrusi panas. Secara keseluruhan, ekstrusi panas terbukti memberikan performa mikrostruktural dan mekanik yang lebih unggul dibanding ekstrusi dingin, dan sangat efektif digunakan dalam proses daur ulang chip aluminium AA6061 secara metalurgi. Abstract: This study investigates the influence of extrusion temperature on the deformation mechanisms, microstructural evolution, and mechanical properties of AA6061 aluminum alloy through a comprehensive literature review, microstructural analysis, and Finite Element Method (FEM) simulations. Three primary sources were examined, including hot-extruded recycled AA6061 chips, AA6061 RHA composites. The findings show that low-temperature extrusion is dominated by strain hardening, which increases strength but reduces ductility and results in weak particle bonding with high porosity. In contrast, hot extrusion at 450–550°C activates dynamic recrystallization, producing refined grains, higher fractions of high-angle grain boundaries, and a more homogeneous microstructure. FEM simulations further confirm that billet heating at 500°C combined with a ram speed of 1–2 mm/s decreases flow stress, promotes uniform metal flow, and improves metallurgical bonding between chips. These microstructural improvements correlate with enhanced hardness, tensile strength, wear resistance, and fatigue life across all hot-extruded materials. Overall, hot extrusion provides superior mechanical performance and microstructural quality compared to cold extrusion, making it an effective approach for structural applications and metallurgical recycling of AA6061 aluminum chips. Keywords: Hot Extrusion, Cold Extrusion, Dynamic Recrystallization, AA6061 Microstructure.