Tio, Nicholas
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

SECURE DOCUMENT NOTARIZATION: A BLOCKCHAIN-BASED DIGITAL SIGNATURE VERIFICATION SYSTEM Tio, Nicholas; Pribadi, Octara; Robet, Robet
JIKO (Jurnal Informatika dan Komputer) Vol 8, No 3 (2025)
Publisher : Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/jiko.v8i3.10811

Abstract

The increasing need for trustworthy digital document verification presents challenges in ensuring authenticity, transparency, and tamper resistance without relying on centralized authorities. This study aims to develop and evaluate a decentralized document notarization system using Ethereum and IPFS that offers secure, transparent, and cost-efficient verification. The system employs modular smart contracts deployed through a factory pattern to create user-specific verifier instances, enabling document submission, revocation, and verification using keccak-256 hashes, ECDSA signatures, and IPFS content identifiers. Methods include contract development, deployment on a local Hardhat network, performance benchmarking, and front-end integration for user interaction. Results show that verifier deployment consumes approximately 1.19 million gas (≈$85 at 20 gwei), document submission around 85 thousand gas (≈$6), and revocation about 50 thousand gas (≈$3.50). Client-side operations such as hashing and IPFS pinning occur in under 50 milliseconds, while real-world blockchain confirmations take 10–30 seconds. The findings demonstrate that decentralized notarization using Ethereum and IPFS is both technically feasible and economically viable. Future enhancements, including Layer 2 rollups, batch notarization, and privacy-preserving features such as encrypted IPFS pinning or zero-knowledge proofs, are proposed to further improve scalability, cost-efficiency, and data confidentiality