This Author published in this journals
All Journal POSITIF
Rakan Nabila, Luthfi
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

The KLASIFIKASI PENYAKIT PADA TANAMAN DAUN SINGKONG MENGGUNAKAN VISION TRANSFORMER: KLASIFIKASI PENYAKIT PADA TANAMAN DAUN SINGKONG MENGGUNAKAN VISION TRANSFORMER Rakan Nabila, Luthfi; Dwi Putro Wicaksono, Aditya
POSITIF : Jurnal Sistem dan Teknologi Informasi Vol 11 No 2 (2025): Positif : Jurnal Sistem dan Teknologi Informasi
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/positif.v11i2.14953

Abstract

This research develops a cassava leaf disease classification model using Vision Transformer (ViT) to identify four types of diseases and healthy leaves. With a dataset from Kaggle (3,000 images/class), the TinyViT model was tested through parameter variations to achieve optimal performance. Results showed that the combination of SGD, 50 epochs, and batch size 32 gave the highest validation accuracy (83.16%), outperforming Adam/AdamW. Despite overfitting (100% training accuracy), the model showed good generalization with 81% precision and recall. These findings confirm the potential of ViT in plant disease detection, while highlighting the need to address overfitting through further regularization. Future research can explore dataset expansion and fine-tuning for accuracy improvement.