Claim Missing Document
Check
Articles

Found 1 Documents
Search

A Solar-Powered Multimodal IoT Framework for Real-Time Transformer Theft Detection Ojokoh, Promise; Agbolade, Olaide
Journal of Computing Theories and Applications Vol. 3 No. 2 (2025): JCTA 3(2) 2025
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.14901

Abstract

Power transformer theft, a pervasive issue disrupting critical infrastructure, necessitates the development of cost-effective and energy-autonomous security solutions. This paper presents the design and implementation of a detection-focused anti-theft framework that integrates a Raspberry Pi Zero W, camera module, and passive infrared (PIR) motion sensors powered by a solar system for continuous monitoring. The system is designed for remote, off-grid deployment, utilizing a headless Raspberry Pi powered by a 5V solar panel and power bank to ensure energy autonomy. Upon motion detection, captured images are processed on the edge device using OpenCV’s Haar Cascade classifier, optimized for upper-body detection to minimize false positives and verify human presence. Captured images are processed locally on the edge device using OpenCV’s Haar Cascade classifier to confirm human presence before an alert is sent to the mobile application, emphasizing real-time operation and low latency. Once an intrusion is confirmed, the images are saved locally and uploaded via the Secure File Transfer Protocol to a custom-developed Android application. The app provides a dedicated remote monitoring interface, enabling secure file transfer and system access, while providing users with immediate notifications and image management capabilities. The system emphasizes low power consumption, real-time operation, and low deployment cost. Tests over 200 triggered events under varied environmental conditions achieved 90% detection accuracy with an average latency of 4.5 s. Solar autonomy was maintained for approximately 24 h under normal operation. It is concluded that the integration of solar power, edge computing of images, and mobile monitoring provides a feasible, scalable, and financially viable framework for securing transformers, especially in resource-constrained environments.