Claim Missing Document
Check
Articles

Found 2 Documents
Search

Prediksi Pergerakan Harga Ethereum Menggunakan Machine Learning dengan Algoritma Random Forest dan XGBoost Girinata, I Made Candra; Styawan, Budi; Saputra, Arwin Wahyu; Arif, M Aidil; Dahur, Arnoldus Janssen
Jurnal Manajemen Informatika, Sistem Informasi dan Teknologi Komputer (JUMISTIK) Vol 4 No 2 (2025): Jurnal Manajemen Informatika, Sistem Informasi dan Teknologi Komputer (JUMISTIK)
Publisher : STMIK Amika Soppeng

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70247/jumistik.v4i2.222

Abstract

ABSTRAK Perkembangan aset kripto yang pesat, khususnya Ethereum, menuntut adanya model prediksi harga yang akurat untuk mendukung strategi investasi dan manajemen risiko. Penelitian ini bertujuan untuk menganalisis dan membandingkan kinerja dua algoritma machine learning ensemble, yaitu Random Forest (RF) dan XGBoost, dalam memprediksi harga harian Ethereum. Dataset historis ETH/USD sebanyak 3.423 observasi dari periode September 2016 hingga Juli 2025 diperoleh dari platform Bitfinex. Setelah melalui tahap pra-pemrosesan data dan rekayasa fitur temporal, dataset dibagi dengan rasio 80:20 untuk pelatihan dan pengujian. Model dievaluasi menggunakan metrik Root Mean Square Error (RMSE) dan Koefisien Determinasi (R²). Hasil eksperimen menunjukkan bahwa XGBoost secara signifikan mengungguli Random Forest, dengan nilai RMSE 134.63 dan R² 0.958. Sebagai perbandingan, Random Forest menghasilkan RMSE 208.45 dan R² 0.899. Temuan ini mengindikasikan bahwa mekanisme boosting pada XGBoost lebih efektif dalam menangkap kompleksitas dan volatilitas data pasar kripto. Kata kunci: Prediksi Harga, Ethereum, Machine Learning, XGBoost, Random Forest.
Network Intrusion Detection Using Machine Learning in Network Intrusion Detection Systems (NIDS) Jansen, Arnoldus; Yuswanto, Dery; Styawan, Budi; Girinata, I Made Candra
KOMNET : Jurnal Komputer, Jaringan dan Internet Vol. 4 No. 1 (2025)
Publisher : Pusat Penelitian dan Pengabdian Politeknik Negeri Tanah Laut

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34128/yt59ac51

Abstract

Computer network security has become a crucial aspect as dependence on network-based services increases. One important mechanism in maintaining network security is the Network Intrusion Detection System (NIDS), which functions to detect suspicious activity or attacks on network traffic. The traditional signature-based approach has limitations in detecting new attacks (zero-day attacks). Therefore, this study proposes the application of Machine Learning and Deep Learning methods to improve network intrusion detection capabilities. The CIC-IDS2017 dataset was used as the data source because it represents various types of modern network attacks. The research stages included data pre-processing, feature selection, model training, and performance evaluation using accuracy, precision, recall, and F1-score metrics. The models used include Random Forest as a representation of Machine Learning and Long Short-Term Memory (LSTM) as a representation of Deep Learning. The results show that the Deep Learning approach is capable of providing better detection performance on complex attacks compared to conventional Machine Learning methods. This research is expected to serve as a reference in the development of adaptive and accurate network intrusion detection systems.