This Author published in this journals
All Journal JURTEKSI
Zaidan Putra, Bazil
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

IMPLEMENTATION OF RANDOM FOREST CLASSIFIER FOR STUDENT GRADUATION CLASSIFICATION Zaidan Putra, Bazil; Nur Fajri, Ika; Nugroho, Agung
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 12 No. 1 (2025): Desember 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v12i1.4160

Abstract

Abstract: Higher education plays an essential role in improving human resource quality, one of which is through the institution’s ability to monitor and predict student graduation outcomes. This study does not focus on a specific university but utilizes the publicly available Students Performance in Exams dataset from Kaggle, consisting of 1,000 student records containing mathematics, reading, and writing scores, along with demographic attributes such as gender, parental education level, lunch type, and test preparation participation. The data were processed through a feature engineering stage by adding an average score variable as an early indicator of graduation status. A predictive model was developed using the Random Forest Classifier, achieving an accuracy of 94.5%. The final model was integrated into a Streamlit-based web application to provide an accessible tool for academic stakeholders. The results indicate that the proposed model can serve as an effective decision-support tool for early evaluation of students’ likelihood of graduation. Keywords: prediction; random forest classifier, streamlit, student graduation. Abstrak: Pendidikan tinggi memegang peran penting dalam peningkatan kualitas sumber daya manusia, salah satunya melalui kemampuan institusi dalam memantau dan memprediksi tingkat kelulusan mahasiswa. Penelitian ini tidak berfokus pada perguruan tinggi tertentu, melainkan menggunakan dataset publik Students Performance in Exams dari Kaggle yang berisi 1.000 data mahasiswa, terdiri atas nilai matematika, membaca, menulis, serta atribut demografis seperti gender, tingkat pendidikan orang tua, jenis makan siang, dan partisipasi kursus persiapan. Data diolah melalui tahap feature engineering dengan menambahkan variabel average score sebagai indikator awal kelulusan. Model prediksi dibangun menggunakan algoritma Random Forest Classifier, yang menghasilkan tingkat akurasi sebesar 94,5%. Model ini kemudian diimplementasikan ke dalam aplikasi web berbasis Streamlit untuk memberikan layanan prediksi yang mudah diakses oleh pihak akademik. Hasil penelitian menunjukkan bahwa model mampu digunakan sebagai alat pendukung keputusan untuk melakukan evaluasi dini terhadap potensi kelulusan mahasiswa. Kata kunci: kelulusan mahasiswa; prediksi; random forest classifier; streamlit.