This Author published in this journals
All Journal JURTEKSI
Lase, Wisriani
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

COMPARISON OF DECISION TREE AND RANDOM FOREST ALGORITHMS FOR ASTHMA Lase, Wisriani; Robet, Robet; Hendri, Hendri
JURTEKSI (jurnal Teknologi dan Sistem Informasi) Vol. 12 No. 1 (2025): Desember 2025
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) STMIK Royal Kisaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v12i1.4192

Abstract

Abstract: Asthma is a chronic respiratory disease that affects millions of people worldwide, making early detection crucial to prevent complications. This study aims to compare the performance of the Decision Tree and Random Forest algorithms in classifying asthma based on clinical symptom data. The data were processed through feature selection and model training stages, then evaluated using accuracy, precision, recall, and F1-score.The experimental analysis revealed that the Random Forest algorithm surpassed the Decision Tree in all metrics, achieving 95.19% accuracy, 90.43% precision, 95.00% recall, and 93.00% F1-score. In contrast, the Decision Tree obtained 89.14% accuracy, 90.60% precision, 88.70% recall, and 89.70% F1-score. These results suggest that Random Forest is more robust and dependable, especially in managing complex and imbalanced medical datasets. Keywords: asthma detection; decision tree; random forest; machine learning. Abstrak: Asma merupakan penyakit pernapasan kronis yang memengaruhi jutaan orang di seluruh dunia sehingga deteksi dini sangat penting untuk mencegah komplikasi. Penelitian ini bertujuan membandingkan kinerja algoritma Decision Tree dan Random Forest dalam mengklasifikasikan asma berdasarkan data gejala klinis. Data diproses melalui tahapan seleksi fitur dan pelatihan model, kemudian dievaluasi menggunakan akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa Random Forest memberikan performa terbaik dengan akurasi 90.43%, presisi 95.00%, recall 95.00%, dan F1-score 93.00%. Sebaliknya, Decision Tree memperoleh akurasi 89.14%, presisi 90.60%, recall 88.70%, dan F1-score 89.70%. Hasil ini menunjukkan bahwa Random Forest lebih kuat dan dapat diandalkan, terutama dalam mengelola kumpulan data medis yang kompleks dan tidak seimbang. Kata kunci: deteksi asma; decision tree; random forest; pembelajaran mesin.