Mbete, Marsianus Gerlian Eka
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PENERAPAN ALGORITMA DECISION TREE UNTUK MEMPREDIKSI RISIKO KREDIT PADA NASABAH BANK: IMPLEMENTATION OF THE DECISION TREE ALGORITHM TO PREDICT CREDIT RISK FOR BANK CUSTOMERS Mbete, Marsianus Gerlian Eka; Bintang , Nathanael Nyala; Noviandus, Victor
HOAQ (High Education of Organization Archive Quality) : Jurnal Teknologi Informasi Vol. 16 No. 2 (2025): Jurnal HOAQ - Teknologi Informasi
Publisher : STIKOM Uyelindo Kupang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52972/hoaq.vol16no2.p241-246

Abstract

Risiko terjadinya kredit macet merupakan salah satu permasalahan utama yang dihadapi oleh lembaga keuangan dalam aktivitas pemberian pinjaman. Untuk mengurangi potensi risiko tersebut, diperlukan suatu sistem prediktif yang mampu mengidentifikasi calon debitur dengan tingkat risiko gagal bayar secara dini. Penelitian ini bertujuan untuk merancang dan membangun model prediksi risiko kredit pada nasabah bank dengan menerapkan algoritma Decision Tree. Data yang digunakan mencakup informasi historis nasabah, antara lain pendapatan, besaran cicilan, uang muka, usia, tagihan listrik dan telepon, keberadaan rekening tabungan, serta jangka waktu pinjaman. Metodologi penelitian meliputi tahap prapemrosesan data, pelatihan model Decision Tree, dan penerapan teknik pruning serta sampling guna mengatasi permasalahan overfitting dan ketidakseimbangan kelas data. Hasil yang diperoleh menunjukkan bahwa model yang dikembangkan mampu mengklasifikasikan risiko kredit secara akurat dan menyajikan hasil yang mudah diinterpretasikan. Penelitian ini diharapkan dapat memberikan kontribusi bagi lembaga keuangan dalam meningkatkan akurasi, efisiensi, dan objektivitas proses penilaian kelayakan kredit.   Credit default risk is one of the major challenges faced by financial institutions in the loan disbursement process. To mitigate this risk, a predictive system is required to identify potential borrowers with a high risk of default at an early stage. This study aims to design and develop a credit risk prediction model for bank customers using the Decision Tree algorithm. The dataset used includes historical customer information such as income, installment amount, down payment, age, utility bills (electricity and telephone), savings account status, and loan term. The research methodology involves data preprocessing, model training using the Decision Tree algorithm, and the application of pruning and sampling techniques to address issues related to overfitting and class imbalance. The results demonstrate that the developed model is capable of accurately classifying credit risk and provides easily interpretable outcomes. This study is expected to contribute to enhancing the accuracy, efficiency, and objectivity of creditworthiness assessments in financial institutions.