Alvina Jelita Firdaus
Universitas Ibrahimy

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Prediksi Resiko Penyakit Menggunakan Algoritma Random Forest sebagai Upaya Pencegahan Kesehatan Masyarakat Alvina Jelita Firdaus; Zaehol Fatah
JISCO : Journal of Information System and Computing Vol 3 No 2 (2025): Jurnal of Information System and Computing
Publisher : UIN Sulthan Thaha Saifuddin Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30631/jisco.v3i2.4029

Abstract

Chronic diseases influenced by lifestyle factors are a crucial public health issue, while predictive models are often limited by class imbalance and a lack of clinical interpretability. This research aims to build an accurate and transparent disease risk prediction model based on lifestyle factors. The method used is hybrid classification, combining the Random Forest algorithm with the SMOTE (Synthetic Minority Oversampling Technique) technique to effectively address the initial data imbalance (3:1 ratio) in the Health Lifestyle Dataset. This balanced data was then split 80:20 for testing. The test results show the model achieved an aggregate accuracy of 74.43%, with strong precision (79%) for the risk class, indicating prediction reliability. Feature Importance analysis provides significant clinical insights, identifying Daily Water Intake (water_intake_l) and Sleep Duration (sleep_hours) as the most dominant predictive factors, even surpassing physiological factors. The conclusion indicates that this hybrid approach is effective as an early screening instrument, with the main advantage being the transparency of lifestyle variable interpretation, which directly supports data-driven prevention strategies