Claim Missing Document
Check
Articles

Found 1 Documents
Search

Machine Learning untuk Identifikasi Tanda Tangan Menggunakan GLCM dan Euclidean Distance Angel, Gresiva Devi; Wulanningrum, Resty
Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) Vol. 4 No. 1 (2020): PROSIDING SEMNAS INOTEK Ke-IV Tahun 2020
Publisher : Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29407/inotek.v4i1.213

Abstract

Tanda tangan (signature) merupakan salah satu bukti identitas seseorang dalam melakukan pengesahan sebuah dokumen atau presensi yang sering digunakan. Tanda tangan juga menjadi fitur pembeda untuk identifikasi seseorang. Keberadaan tanda tangan dalam sebuah dokumen menyatakan bahwa pihak yang menandatangani, mengetahui dan menyetujui seluruh isi dokumen. Mengenal bentuk tanda tangan seseorang sangatlah penting dalam melakukan pencocokan tanda tangan terhadap presensi atau dokumen untuk mengetahui apakah benar yang bertanda tangan adalah orang yang bersangkutan atau tidak. Oleh karena itu, dibuat sebuah sistem identifikasi tanda tangan menggunakan Gray Level Co-Occurence Matrix (GLCM) dan Euclidean Distance. Pengujian menunjukkan hasil terbaik pada skenario pada skenario 1 dengan tingkat akurasi 67,5%, skenario 2 dengan akurasi 67%, dan yang paling rendah skenario 3 dengan akurasi 57,5%. Penggunaan dimensi berbeda antara citra trainning dan citra testing menghasilkan akurasi tertinggi pada skenario 1 sebesar 65%, skenario 2 dengan akurasi 14%, dan yang paling rendah pada skenario 3 dengan akurasi hanya 10%.