Claim Missing Document
Check
Articles

Found 1 Documents
Search

Pengolahan Citra Kematangan Pisang Menggunakan Convolutional Neural Network VGG19 Gilang Dwi Cahyo; Risa Helilintar; Intan Nur Farida
Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) Vol. 9 No. 2 (2025): Prosiding Seminar Nasional Inovasi Teknologi Tahun 2025
Publisher : Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29407/d079q671

Abstract

Klasifikasi tingkat kematangan buah pisang secara manual masih umum dilakukan, yang sering kali menyebabkan ketidakkonsistenan serta memerlukan waktu dan tenaga yang besar. Untuk mengatasi permasalahan ini, penelitian ini mengusulkan penggunaan metode Convolutional Neural Network (CNN) dengan arsitektur VGG19 yang dikenal mampu mengekstraksi fitur visual secara mendalam. Dataset yang digunakan terdiri dari 5.616 gambar pisang yang diklasifikasikan ke dalam empat kategori: mentah, matang, terlalu matang, dan busuk. Teknik augmentasi data dan pendekatan transfer learning diterapkan untuk meningkatkan performa model. Hasil pelatihan menunjukkan akurasi validasi sebesar 98% dan nilai loss kurang dari 0,07 setelah 25 epoch. Model menunjukkan kemampuan generalisasi yang baik tanpa tanda-tanda overfitting. Temuan ini mengindikasikan bahwa pendekatan CNN VGG19 efektif untuk pengembangan sistem klasifikasi kematangan pisang secara otomatis