Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi Algoritma Convolutional Neural Network (CNN) Untuk Klasifikasi Jenis Ras Kucing Dengan Metode Mobilenetv2 diyah kingkin sulistiana; Made Ayu Dusea Widyadara; Umi Mahdiyah
Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) Vol. 9 No. 3 (2025): Prosiding Seminar Nasional Inovasi Teknologi Tahun 2025
Publisher : Universitas Nusantara PGRI Kediri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29407/pycd3g30

Abstract

Kucing merupakan hewan peliharaan yang sangat popular di dunia. Kucing juga memiliki banyak jenis ras yang diakui secara internasional yaitu sekitar 142 ras kucing. Karena banyaknya jenis ras kucing di dunia, sehingga banyak pemilik kucing yang sulit untuk membedakan jenis ras kucing yang mereka pelihara. Oleh karena itu dibutuhkan sistem klasifikasi otomatis berbasis pengolahan citra menggunakan algoritma Convolutional Neural Network dengan arsitektur MobileNetV2. Model dikembangkan untuk mengenali 5 jenis ras kucing dengan dataset berjumlah 500 gambar. Data dilatih selama 20 epoch dengan batch size 32, menghasilkan akurasi tertinggi sebesar 91%. Evaluasi dengan data baru menunjukkan bahwa model mampu mengidentifikasi secara akurat. Hasil ini menunjukkan potensi MobileNetV2 sebagai solusi ringan dan efektif untuk klasifikasi citra berbasis ras kucing dalam aplikasi nyata.