Kean Pah Lim
Universiti Putra Malaysia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Safety Evaluation of MRI Magnetic Field Leakage from Different Configurations Yap Siew Hong; Siti Aisyah Mohd Nordin; Mohd Mustafa Awang Kechik; Muhammad Khalis Abdul Karim; Zarina Ramli; Hussien Baqjiah; Soo Kien Chen; Kean Pah Lim; Muhammad Kashfi Shabdin; Aliah Nursyahirah Kamarudin; Aris Doyan; Arebat Ryad Alhadei Mohamed; Abdul Halim Shaari
Journal of Material Science and Radiation Vol. 1 No. 1 (2025): April
Publisher : Balai Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Magnetic Resonance Imaging (MRI) systems generate intense static magnetic fields (SMFs), with fringe field propagation varying considerably between installations, even among scanners that operate at the same nominal field strength. This study investigates the safety implications of magnetic field leakage by quantifying and comparing SMFs distributions surrounding multiple MRI facilities. The assessment covers 1.5 T MRI scanners at Hospital Canselor Tuanku Muhriz (HCTM) and Hospital Pakar Kanak-Kanak UKM (HPKK), and 3 T scanners at the National Cancer Institute / Institut Kanser Negara (IKN), Pusat Pengimejan Diagnostik Nuklear (PPDN), and HCTM. Magnetic field intensities were recorded using a Magnetometer HP-01 provided by the Medical Radiation Surveillance Division (BKRP), Ministry of Health Malaysia, and visualised using MATLAB to model spatial field dispersion. Statistical tools, including Box and Whisker plots and the Shapiro-Wilk test, were employed to analyse magnetic field uniformity and containment. Specifically, 1.5 T scanners at HCTM and HPKK, and 3.0 T scanners at IKN, PPDN, and HCTM, each displayed distinct SMFs propagation profiles. These findings align with earlier studies conducted in Italy, confirming that magnetic field distributions near the magnet core can differ substantially based on scanner model and site-specific installation variables—even when B₀ remains constant. Notably, HCTM exhibited superior SMFs confinement, with lower standard deviation and a narrower distribution range, suggesting better shielding design. This enhances occupational safety in zones where radiographers frequently operate. The results reinforce the need for site-specific SMFs assessments and optimised shielding practices to maintain safe MRI environments for both staff and patients
Effect of Sintering Temperature on the Phase Formation and Superconducting Properties of Bi1.6Pb0.4Sr2Ca2Cu3O10 Ceramics Synthesised via Co-Precipitation Nurhidayah Mohd Hapipi; Soo Kien Chen; Mohd Mustafa Awang Kechik; Kean Pah Lim; Abdul Halim Shaari; Nor Atikah Baharuddin; Nurul Auni Khalid; Muhammad Kashfi Shabdin; Kar Ban Tan; Oon Jew Lee
Journal of Material Science and Radiation Vol. 1 No. 2 (2025): August
Publisher : Balai Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56566/jmsr.v1i2.387

Abstract

In this work, (Bi, Pb)-2223 superconducting ceramics with the nominal composition Bi1.6Pb0.4Sr2Ca2Cu3O10 were synthesised via the co-precipitation method and sintered at temperatures of 845 °C, 850 °C, and 855 °C. X-ray diffraction (XRD) analysis confirmed the dominance of Bi1.6Pb0.4Sr2Ca2Cu3O10 phase with minor traces of secondary phases, Ca2PbO4 (dicalcium lead (IV) oxide). An increase in sintering temperature led to a larger average grain size and reduced intergranular voids. Electrical resistivity measurements using the four-point probe method revealed the highest superconducting transition temperature (Tc onset = 104 K) for samples sintered at 845 °C. Higher sintering temperatures reduced the value of Tc onset and resulted in a wider transition width, ΔTc. These findings highlight the critical influence of sintering temperature on the structural and microstructural properties, which in turn govern the superconducting performance of (Bi, Pb)-2223 ceramics.
Comparative Characterisation of Structural and Superconducting Properties of Y-123 and Y-247 Synthesised by Thermal Treatment at 980 °C Siew Hong Yap; Tai Pao Er; Mohd Mustafa Awang Kechik; Muhammad Khalis Abdul Karim; Hussien Baqiah; Soo Kien Chen; Kean Pah Lim; Muhammad Kashfi Shabdin; Nurhidayah Mohd Hapipi; Aliah Nursyahirah Kamarudin; Arebat Ryad Alhadei Mohamed; Aris Doyan; Abdul Halim Shaari
Journal of Material Science and Radiation Vol. 1 No. 3 (2025): December
Publisher : Balai Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56566/jmsr.v1i3.425

Abstract

This study presents a comparative analysis of the structural and superconducting properties of YBa₂Cu₃O₇−δ (Y-123) and Y₂Ba₄Cu₇O₁₅−δ (Y-247) superconductors synthesised via a thermal treatment method at 980 °C. Metal nitrates were used as starting precursors, with polyvinylpyrrolidone (PVP) serving as a capping agent to enhance dispersion and control microstructure. X-ray diffraction (XRD) confirmed that Y-123 and Y-247 were the dominant phases in their respective samples, although minor peaks of BaCuO₂ were detected, indicating the presence of secondary phases. Scanning electron microscopy (SEM) revealed that Y-247 exhibited larger grain morphology and higher porosity than Y-123, suggesting that the chosen sintering temperature exceeds the thermal stability range for the Y-247 phase. Electrical resistivity measurements showed a single superconducting transition for both samples, with Y-123 exhibiting a sharper transition width (ΔTc = 8.1 K) compared to Y-247, indicating better grain connectivity and phase uniformity. Energy dispersive X-ray spectroscopy (EDX) supported the elemental presence of Y, Ba, Cu, and O in both samples, though variations in stoichiometry were attributed to secondary phases. The observed expansion in the c-axis lattice of Y-247, combined with its higher porosity, points to oxygen loss during sintering, which contributes to the reduced superconducting performance. Overall, the results confirm that both Y-123 and Y-247 can be successfully synthesised using a simple and environmentally friendly thermal treatment method. However, Y-123 exhibits better structural integrity and superconducting performance at the high sintering temperature of 980 °C, making it a more promising candidate for large-scale production of bulk high-temperature superconductors.
Influence of Sintering Temperatures on Pr0.7Ba0.3MnO3 Prepared Using Thermal Treatment Method Xiao Tong Hon; Kean Pah Lim; Lik Nguong Lau; Mohd Mustafa Awang Kechik; Soo Kien Chen; Muhammad Kashfi Shabdin; Nurhidayah Mohd Hapipi; Najihah Rohiat; Abdul Halim Shaari
Journal of Material Science and Radiation Vol. 1 No. 3 (2025): December
Publisher : Balai Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56566/jmsr.v1i3.478

Abstract

In this work, Pr0.7Ba0.3MnO3 (PBMO) was synthesised using a thermal treatment method with sintering temperature ranging from 800 °C to 1100 °C. X-ray diffraction (XRD) confirmed the formation of pure PBMO phase at 1100 °C, while lower sintering temperatures led to the presence of secondary phase, particularly Pr(Mn2O5). Microstructural analysis revealed significant grain growth with rising sintering temperatures, accompanied by enhanced crystallinity and reduced secondary phases. Magnetic measurements indicated ferromagnetic behaviour at room temperature for all samples. However, the electrical resistivity demonstrates an unexpected increase with sintering temperature, attributed to the influence of secondary phase at lower sintering temperatures and grain growth in the pure PBMO phase at higher sintering temperatures. Additionally, microstructural defects such as oxygen non-stoichiometry or porosity might further contribute to the suppression of the metal-insulator transition temperature. Overall, this study highlights the significant role of sintering temperatures in controlling the phase purity, microstructure and physical behaviour of PBMO samples, offering valuable insights for their potential applications in spintronics or magnetic sensing devices.