Khairul Azhar Abdul Halim
Malaysian Nuclear Agency, Bangi

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Chemical, Structural and Thermal Analysis of PET Flakes induced by Electron Beam Irradiation Nor Batrisya Ismail; Mohd Hamzah Harun; Izzuddin Mohamad Zaharuddin; Norfazlinayati Othman; Mahathir Mohamed; Mohd Sofian Alias; Mohd Faizal Abd Rahman; Khairil Nor Kamal Umar; Nurul Huda Mudri; Khairul Azhar Abdul Halim; Rida Tajau; Rusdyana Natasa Ghazali; Siti Nur Eyisha Wafa Mohd Aminuddin
Journal of Material Science and Radiation Vol. 1 No. 2 (2025): August
Publisher : Balai Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56566/jmsr.v1i2.393

Abstract

This study presents a comprehensive chemical, structural, and thermal characterization of polyethylene terephthalate (PET) flakes subjected to electron beam irradiation at doses of 0, 40, and 120 kGy. Post-consumer PET bottle flakes were analyzed using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Thermogravimetric Analysis (TGA) to determine irradiation-induced modifications. FTIR results reveal noticeable variations in key functional groups, particularly in the ester (C=O and C–O) and aromatic regions, indicating chain scission, partial cross-linking, and oxidation with increasing radiation doses. XRD analysis shows a progressive reduction in peak intensity and an increase in peak broadening, signifying decreased crystallinity and enhanced amorphous character due to structural disorder. TGA measurements demonstrate improved thermal stability of irradiated PET, with major degradation shifting from ~450 °C in the non-irradiated sample to ~480 °C after irradiation, and a clearer two-stage degradation pattern associated with structural rearrangements. These findings confirm that electron beam irradiation induces significant yet controlled modifications on PET’s molecular structure, crystallinity, and thermal behavior. Such property alterations highlight the potential of electron beam treatment as an effective pre-processing approach to enhance the recyclability and performance of waste PET, contributing to more sustainable plastic waste management strategies
Characterization of Photocurable Functionalized-CNT Nanocoating to Mitigate the Naturally Emission of Radon Gas Aisha Dalila Ab Aziz; Mohd Hamzah Harun; Izzuddin Mohamad Zaharuddin; Nor Adnin Ezani Mohd Ezani; Norfazlinayati Othman; Mahathir Mohamed; Mohd Sofian Alias; Mohd Faizal Abd Rahman; Khairil Nor Kamal Umar; Nurul Huda Mudri; Khairul Azhar Abdul Halim; Mohamad Syahiran Mustafa; Lakam Mejus; Faizal Azrin Abdul Razalim; Rosley Che Ismail; Abdul Muiz Mohd Sani; Sharilla Mohd Faisal; Rida Tajau
Journal of Material Science and Radiation Vol. 1 No. 3 (2025): December
Publisher : Balai Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56566/jmsr.v1i3.480

Abstract

This study focuses on the synthesis and characterization of an anti-radon photocurable nanocoating formulated using a UV-curable formulation incorporated with functionalized carbon nanotubes (F-CNTs). The coating was prepared using Ebecryl 600 (urethane acrylate oligomer) and TMPTA (monomer), with GPTMS as a coupling agent and various photoinitiator combinations. Different F-CNT loadings ranging from 0.1 to 0.9 wt% were studied to evaluate their effects on coating performance. The samples were cured under UV irradiation for 2–20 passes to investigate the influence of exposure time on polymer crosslinking. Characterization analyses including pendulum hardness, Fourier-transform infrared spectroscopy (FTIR), viscosity, gel content, and radon gas permeability were performed. Results indicated that the incorporation of F-CNTs enhanced the mechanical strength and crosslinking density of the coating. The optimal formulation exhibited a hardness of 150.33 s (BAPO + 8 passes) and a gel content of 97%. Furthermore, radon concentration measurements showed a 28.9% reduction after applying a single coating layer, confirming the coating’s potential as an effective barrier for radon gas mitigation.
Synthesis of Carbon Nanomaterials from Polyethylene Terephthalate (PET) Waste Using Chemical Vapor Deposition Nor Adnin Ezani Mohd Ezani; Mohd Hamzah Harun; Izzuddin Mohd Zaharuddin; Norfazlinayati Othman; Mahathir Mohamed; Mohd Sofian Alias; Mohd Faizal Abd Rahman; Khairil Nor Kamal Umar; Nurul Huda Mudri; Khairul Azhar Abdul Halim; Farah Fadzehah Hilmi; Rida Tajau
Journal of Material Science and Radiation Vol. 1 No. 3 (2025): December
Publisher : Balai Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56566/jmsr.v1i3.482

Abstract

Upcycling is an effective approach to reduce plastic waste, polyethylene terephthalate (PET) and promote sustainability. Plastic bottles usually were made from PET polymer and a raw material to produce carbon nanomaterials (CNMs). CNMs are synthesized using chemical vapor deposition (CVD) process and purified to eliminate catalysts and unwanted compounds. Various catalysts were used to investigate the economic and effective in producing the CNMs. Metal catalysts such as ferrocene, cobalt and iron are the important elements in the CVD process as they provide surfaces for carbon to attach. CNMs morphology and graphitic structure were observed from Raman analysis and TEM analysis. The application of upcycling offers the advantage of utilizing low-cost raw materials to produce higher-value products, providing additional benefits.