Chamboko, Hazel
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Twitter (X) Sentiment Analysis on Monkeypox: A Systematic Literature Review Chamboko, Hazel; Maguraushe, Kudakwashe; Ndlovu, Belinda
IJID (International Journal on Informatics for Development) Vol. 14 No. 2 (2025): IJID December
Publisher : Faculty of Science and Technology, Universitas Islam Negeri (UIN) Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/ijid.2025.5196

Abstract

Monkeypox has a risk of growing into a global threat. Understanding public sentiments is crucial for effective emergency responses, as it helps counter misinformation, enhance communication, and improve the retention and application of public health information. This systematic review of literature aims to provide foundations for identifying existing algorithms, commonly used data collection methods, and pre-processing techniques applied to Twitter discussions on Mpox. The review followed the PRISMA guidelines. Relevant literature was retrieved from ScienceDirect, IEEE, PubMed, and Springer databases, resulting in 15 studies that met the inclusion criteria. Most preprocessing methods include stop word removal, lemmatisation, and tokenisation; commonly used data collection methods include Twitter API, Academic API V2, Snscrape, Twint, and Tweepy. Classification of sentiment tended to be hybrid models like CNN-LSTM or transformer-based models such as BERT, which also perform well in dealing with complex linguistic patterns. These recent models, additionally, addressed other very important issues like misinformation detection, irony, and bot-generated content, which earlier models would often fail to tackle. Despite these advancements, much work still needs to be done in improving the accuracy, generalizability, and interpretability of sentiment analysis models in live monitoring of public health.