Najidah Noorizan, Farah
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Classification and regression tree model for diabetes prediction Najidah Noorizan, Farah; Anida Jumadi, Nur; Mun Ng, Li
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 15, No 1: March 2026
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v15i1.pp207-216

Abstract

Diabetes mellitus is characterized by excessive blood glucose that occurs when the pancreas malfunctions while producing insulin. High blood glucose levels can cause chronic damage to organs, particularly the eyes and kidneys. Diabetes prediction models traditionally use a variety of machine learning (ML) algorithms by combining data from the glucose levels, patient health parameters, and other biomarkers. Prior research on diabetes prediction using various algorithms, such as support vector machine (SVM) and decision tree (DT) models, demonstrates an accuracy rate of approximately 70%, which is relatively modest. Therefore, in this study, a classification and regression tree (CART) multiclassifier model has been proposed to improve the accuracy of diabetes prediction, which is based on three classes: non-diabetic, pre-diabetic, and diabetic. The study involved data preprocessing steps, hyperparameter tuning, and evaluation of performance metrics. The model achieved 97% accuracy while utilizing the value of 5 for the number of leaves per node, the value of 10 for the maximum number of splits, and deviance as the split criterion, which also resulted in a precision of 98%, recall of 97%, and F1-score of 98%, showing that the proposed multiclassifier model can accurately predict diabetes. In conclusion, the proposed CART model with the best hyperparameter setting can enable the highest accuracy in predicting diabetes classes.
Fetal electrocardiogram extraction and signal quality assessment using statistical method Mun Ng, Li; Anida Jumadi, Nur; Najidah Noorizan, Farah
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 15, No 1: March 2026
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v15i1.pp217-227

Abstract

Abdominal electrocardiogram (aECG) can be used to monitor fetal heart rate (fHR), providing critical insights into fetal health during pregnancy. However, separating the mixed signals of fetal ECG (fECG) and maternal ECG (mECG) within the aECG remains a critical challenge. This paper investigates the integration of statistical metrics, including signal-to-noise ratio (SNR), skewness, kurtosis, standard deviation, and variance to assess fECG signal quality during extraction using three adaptive filtering metods ((Least mean square (LMS), normalized LMS (NLMS), and recursive least square (RLS)) and independent component analysis (ICA). The findings reveal that RLS achieves the best performance among the three AF methods, with the highest SNR of 5.6 dB at the step size, ยต of 0.9. For ICA with a bandpass Chebyshev filter (low-cut frequency = 1 Hz, high-cut frequency = 50 Hz) produces an SNR of 0.86 dB. Additionally, both RLS and ICA yield similar fHR values of 133 bpm with a PE measurement of 0.9%. In conclusion, integrating statistical metrics with ICA and RLS effectively extracts fECG with good signal quality. Future research could explore other ECG datasets and incorporate machine learning to further improve fECG extraction and signal quality assessment.