Baroroh, Nurul
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Pengaruh Hyperparameter terhadap Kinerja MobileNetV2 dan InceptionV3 pada Klasifikasi Retakan Beton rozada, akfi; Baroroh, Nurul; Khoirur Rizky, Muhammad Ivan; Pramunendar, Ricardus Anggi
Jurnal Sistem Komputer dan Informatika (JSON) Vol. 7 No. 2 (2025): Desember 2025
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v7i2.9389

Abstract

Deteksi retakan pada permukaan beton merupakan langkah penting dalam menjaga keandalan dan keselamatan struktur infrastruktur. Metode inspeksi visual masih memiliki keterbatasan karena dipengaruhi kondisi lingkungan, subjektivitas operator, serta potensi kesalahan identifikasi. Untuk mengatasi hal tersebut, penelitian ini membandingkan performa dua arsitektur Convolutional Neural Network (CNN), yaitu MobileNetV2 dan InceptionV3, dalam melakukan klasifikasi citra retakan beton. Dataset yang digunakan adalah NYA-Crack-DATA yang terdiri dari dua kelas, yaitu crack dan no-crack, dengan total 5.026 citra. Seluruh citra diproses melalui tahapan pra-pemrosesan dan augmentasi untuk menghasilkan data yang seragam, lebih variatif, serta mendukung proses pelatihan yang stabil pada kedua model modern tersebut.Penelitian ini berfokus pada analisis pengaruh hyperparameter terhadap performa kedua arsitektur CNN tersebut. Empat hyperparameter utama diuji secara bertahap, meliputi learning rate, dropout, batch size, dan epoch. Evaluasi setiap konfigurasi dilakukan menggunakan Stratified 5-Fold Cross-Validation agar hasil yang diperoleh lebih stabil, konsisten, dan tidak bias. MobileNetV2 menunjukkan performa terbaik pada kombinasi learning rate 0.0005, dropout 0.2, batch size 128, dan 30 epoch, dengan akurasi 0.981, presisi 0.979, recall 0.988, dan F1-score 0.984. Sementara itu, InceptionV3 mencapai akurasi tertinggi sebesar 0.966 pada konfigurasi learning rate 0.0003, dropout 0.8, batch size 128, dan 40 epoch.Hasil penelitian menunjukkan bahwa MobileNetV2 lebih unggul dalam akurasi, stabilitas, serta efisiensi komputasi dibandingkan InceptionV3, sehingga lebih sesuai untuk implementasi nyata pada perangkat dengan keterbatasan sumber daya komputasi modern.
Analisis Hyperparameter Tuning MobileNetV2 dengan Metode Sequential Search dalam Sistem Klasifikasi Penyakit Daun Kentang Khoirur Rizky, Muhammad Ivan; Rozada, Akfi; Baroroh, Nurul; Pramunendar, Ricardus Anggi
Building of Informatics, Technology and Science (BITS) Vol 7 No 3 (2025): December 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i3.8786

Abstract

Indonesia’s national potato production faces significant threats from leaf diseases, while manual classification remains slow, subjective, and prone to error due to the high visual similarity across disease categories. This highlights the need for a precise and reliable automated classification system. However, many previous studies have not applied systematic hyperparameter optimization, leaving the capacity of deep learning architectures underutilized. Addressing this research gap, this study aims to enhance the performance of MobileNetV2 for potato leaf disease classification through a structured hyperparameter optimization process. A Sequential Search strategy validated through 3 fold Stratified Cross Validation is employed to obtain stable performance estimates. Four key hyperparameters are examined: learning rate from 0.001 to 0.009, dropout from 0.1 to 0.9, batch size from 8 to 192, and epochs from 10 to 100. The optimal configuration consists of a learning rate of 0.007, dropout of 0.2, batch size of 32, and 60 epochs, which enables MobileNetV2 to achieve an accuracy of 99 percent. Despite this strong performance, evaluation results reveal a minor limitation in the Young Blight class, where precision is slightly lower due to overlapping visual characteristics. These findings establish a new benchmark for potato leaf disease classification and provide a reproducible optimization framework for future studies. The study offers both methodological and practical contributions to the development of precise and efficient plant disease classification systems within the context of smart agriculture.