Andiyani, Maesaroh
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Prediksi Tren Data Penjualan Album K-Pop Berbasis Machine Learning Menggunakan Algoritma XGBoost Andiyani, Maesaroh; Harahap, Erwin; Suhaedi, Didi
Jurnal Riset Matematika Volume 5, No.2, Desember 2025, Jurnal Riset Matematika (JRM)
Publisher : UPT Publikasi Ilmiah Unisba

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29313/jrm.v5i2.8340

Abstract

Abstract. The South Korean music industry (K-Pop) is experiencing rapid growth and holds significant global influence. Despite the dominance of digital platforms, physical album sales remain strong, although their trends are not always consistent. This study aims to predict K-Pop album sales trends for the period 2025–2029 using the eXtreme Gradient Boosting (XGBoost) machine learning algorithm, based on historical data from 2020–2024. Data were manually collected from multiple digital platforms, including Circle Chart, YouTube, Instagram, X, and Naver. The research follows the Knowledge Discovery in Database (KDD) framework, consisting of data selection, pre-processing, transformation, data mining, and evaluation stages. The model’s performance was evaluated using the Mean Absolute Percentage Error (MAPE) metric. The results show a general upward trend in album sales across all four major K-Pop agencies HYBE, SM Entertainment, JYP Entertainment, and YG Entertainment although the growth patterns vary by agency. Feature importance analysis revealed different key influencing factors 24-hour MV views played a dominant role at HYBE and SM, the album releases was most significant at JYP, and the active artists had the greatest impact at YG. These findings demonstrate that XGBoost can effectively model and predict K-Pop album sales while identifying agency-specific influencing factors. Abstrak. Industri musik Korea Selatan (K-Pop) mengalami pertumbuhan pesat dan memiliki pengaruh global yang signifikan. Meskipun era digital mendominasi, penjualan album fisik K-Pop terus meningkat, namun tidak selalu menunjukkan pola yang konsisten. Penelitian ini bertujuan untuk memprediksi tren penjualan album K-Pop menggunakan algoritma machine learning eXtreme Gradient Boosting (XGBoost) dengan prediksi tren data penjualan album tahun 2025–2029, berdasarkan data historis periode 2020–2024. Sumber data diperoleh dari platform digital seperti Circle Chart, YouTube, Instagram, X, dan Naver. Penelitian ini dilakukan melalui pendekatan Knowledge Discovery in Database (KDD), dan model dievaluasi menggunakan Mean Absolute Percentage Error (MAPE). Berdasarkan hasil penelitian, dapat disimpulkan bahwa pola dan tren penjualan album K-Pop tahun 2025–2029 menunjukkan peningkatan dari tahun ke tahun, dengan pola yang beragam pada setiap agensi tergantung pada faktor seperti jumlah album dan aktivitas artis. Hasil feature importance menggunakan algoritma XGBoost menunjukkan bahwa setiap agensi memiliki faktor yang berbeda dalam memengaruhi penjualan album, seperti total tayangan MV 24 jam pada agensi HYBE Corporation dan SM Entertainment, total album pada agensi JYP Entertainment, serta jumlah artis aktif pada agensi YG Entertainment.