Penelitian ini bertujuan untuk mengkaji kemampuan pemahaman konseptual dan pemecahan masalah peserta didik SDN Parinring dalam menyelesaikan soal matematika berbentuk cerita pada topik Operasi Bilangan Cacah 10.000, Kelipatan Persekutuan Terkecil (KPK) dan Faktor Persekutuan Terbesar (FPB), Operasi Bilangan Pecahan, serta Keliling dan Luas Bangun Datar. Proses pengkajiannya menggunakan metode penelitian kualitatif jenis deskriptif dengan metode studi kasus, serta menggunakan wawancara, observasi, dan tes sebagai instrumen penelitian. Peneliti juga menggunakan teori Perkembangan Kognitif Piaget tahap ketiga akhir sebagai kriterianya sehingga subjek penelitian yang terlibat merupakan peserta didik kelas V, serta melibatkan wali kelas atau guru kelasnya. Hasil penelitian menunjukkan bahwa kemampuan pemahaman konseptual peserta didik bervariasi, dimana meskipun peserta didik telah mampu menggunakan istilah dan notasi matematika dengan tepat, secara keseluruhan, pemahaman konseptual mereka masih perlu ditingkatkan, terutama dalam memberikan jawaban yang benar dan memberikan contoh aplikasi dalam kehidupan sehari-hari. Kemampuan pemecahan masalah peserta didik juga menunjukkan keragaman dimana peserta didik telah mampu mengidentifikasi jenis soal, namun mereka masih kurang mampu memberikan hasil perhitungan yang benar dan melakukan pemeriksaan jawabannya kembali. Faktor yang mempengaruhi kemampuan pemahaman konseptual dan pemecahan masalah matematis peserta didik melibatkan aspek individu merekas baik secara internal maupun eksternal, metode pembelajaran, fasilitas belajar, serta dukungan orang tua. Oleh karena itu, untuk meningkatkan kemampuan tersebut, disarankan untuk menerapkan pembelajaran yang lebih terstruktur, memanfaatkan teknologi, meningkatkan motivasi peserta didik, serta memberikan umpan balik yang konstruktif. This study aims to thoroughly examine and assess the conceptual understanding and problem-solving abilities of fifth-grade students at SDN Parinring, specifically focusing on their ability to solve mathematics problems related to the topics of Operations with Natural Numbers up to 10,000, Least Common Multiple (LCM) and Greatest Common Divisor (GCD), Operations with Fractional Numbers, and the Perimeter and Area of Two-Dimensional Shapes. The research adopts a qualitative descriptive approach, employing a case study method and utilizing a variety of instruments such as interviews, observations, and tests to gather data and insights. In accordance with Piaget's third stage of cognitive development theory, which serves as the theoretical framework and criteria for the study, the participants involved consist of fifth-grade students along with their homeroom teacher. The findings from the study reveal that students' conceptual understanding shows considerable variation; although many students are able to correctly use mathematical terms and notations, their overall grasp of the material requires further enhancement, particularly when it comes to providing accurate answers and offering examples that connect to real-life applications. Additionally, the students' problem-solving abilities are diverse, as they are generally capable of identifying the types of problems presented to them, but they often struggle with producing precise calculations and revisiting their answers for verification. The factors that influence these abilities include a combination of both internal and external elements related to the students, such as their personal characteristics, teaching methods employed in the classroom, available learning facilities, and the level of support they receive from their parents. As a result, in order to enhance these abilities, it is strongly recommended to implement a more structured and systematic approach to learning, make better use of technology, foster greater student motivation, and provide consistent and constructive feedback to guide the students in their learning journey.