Claim Missing Document
Check
Articles

Found 1 Documents
Search

KLASIFIKASI KEMATANGAN PISANG BERDASARKAN CITRA WARNA KULIT MENGGUNAKAN DECISION TREE DAN SUPPORT VECTOR MACHINE DENGAN INTEGRASI YOLOV8 Gitisari, Deva; Nisrina, Restu Putri; Putri, Nayla Natania; Heristian, Sujiliani; Apriana, Veti; Santoso, Rame
Indonesian Journal of Business Intelligence (IJUBI) Vol 8 No 2 (2025): Indonesian Journal of Business Intelligence (IJUBI)
Publisher : Universitas Alma Ata

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21927/ijubi.v8i2.6488

Abstract

  Di Indonesia, panen pisang sering dilakukan sebelum buah mencapai kematangan fisiologis. Akibatnya, seringkali pisang yang belum matang beredar di pasaran. Tujuan dari penelitian ini adalah untuk mengevaluasi akurasi dua algoritma Machine Learning, yaitu Decision Tree dan Support Vector Machine (SVM) untuk menentukan tingkat kematangan pisang dengan  menggunakan dataset 6000 gambar pisang yang dikategorikan unripe, ripe, overripe, dan rotten. Dataset dipecah dalam rasio 80:20 untuk data latih dan data uji. Kemudian, metrik akurasi, presisi, recall, dan skor F1 digunakan untuk menguji. Hasil pengujian menunjukkan algoritma SVM memiliki akurasi tertinggi 92%, melampaui Decision Tree yang memiliki akurasi 82%. Model SVM Terbaik kemudian dikombinasikan dengan YOLOv8 untuk identifikasi kematangan pisang secara real-time menggunakan kamera. Penelitian ini memberikan kontribusi dengan menunjukkan efektivitas kombinasi HSV-SVM serta implementasi real-time menggunakan YOLOv8 menawarkan solusi praktis untuk pemantauan kualitas pisang secara otomatis.