Gyening, Rose-Mary Owusuaa Mensah
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Deep-fuzzy personalisation framework for robot-assisted learning for children with autism Gyening, Rose-Mary Owusuaa Mensah; Hayfron-Acquah, James Ben; Asante, Michael; Takyi, Kate; Appiahene, Peter
Indonesian Journal of Electrical Engineering and Computer Science Vol 41, No 1: January 2026
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v41.i1.pp320-330

Abstract

Research exploring the efficacy of robots in autism therapy has predominantly relied on the Wizard-of-Oz method, where robots execute predetermined behaviours. However, this approach is constrained by its heavy reliance on human intervention. To address this limitation, we introduce a novel deep-fuzzy personalization framework for social robots to enhance adaptability in interactions with autistic children. This framework incorporates a deep learning model called singleshot emotion detector (SED) with a mean average precision of 93% and a fuzzy-based engagement prediction engine, utilizing factors such as scores, IQ levels, and task complexity to estimate the engagement of autistic children during robot interactions. Implemented on the humanoid robot RoCA, our study assesses the impact of this personalization approach on learning outcomes in interactions with Ghanaian autistic children. Statistical analysis, specifically Mann Whitney tests (U=3.0, P=0.012), demonstrates the significant improvement in learning gains associated with RoCA's adoption of the deep fuzzy approach.