Karo-Karo, Julkarnaen
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Prediksi Penyakit Jantung Menggunakan Algoritma Machine Learning Berdasarkan Indikator Kesehatan Karo-Karo, Julkarnaen; Syakir, Adryan Raihan; Raihan, Raihan; Sumanto, Sumanto; Budiawan, Imam; Pakpahan, Roida; Christian, Ade
Jurnal Ilmiah Sistem Informasi Vol. 5 No. 1 (2026): January: Jurnal Ilmiah Sistem Informasi
Publisher : LPPM Universitas Sains dan Teknologi Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51903/1tgz3234

Abstract

Penyakit jantung tetap menjadi penyebab utama kematian di seluruh dunia, sehingga menekankan perlunya deteksi dini dan langkah pencegahan aktif melalui pendekatan yang didasarkan pada analisis data. Penelitian ini bertujuan untuk memprediksi kemungkinan terjadinya penyakit jantung dengan memanfaatkan berbagai metode pembelajaran mesin, yang bergantung pada indikator kesehatan seperti nilai tekanan darah, tingkat kolesterol, indeks massa tubuh, serta pengukuran denyut nadi. Penelitian ini menerapkan teknik pembelajaran terawasi, meliputi Regresi Logistik, Pohon Keputusan, Hutan Acak, dan Mesin Vektor Pendukung, untuk mengevaluasi efektivitas masing-masing model dalam menentukan kondisi kesehatan pasien. Data yang digunakan berasal dari repositori kesehatan yang dapat diakses secara gratis, mencakup 303 catatan medis pasien, di mana setiap catatan ditandai oleh 14 atribut kesehatan yang berbeda. Untuk memastikan keandalan data, beberapa langkah pra-pemrosesan diterapkan, seperti normalisasi, seleksi fitur, dan penanganan data yang hilang. Temuan eksperimen mengungkapkan bahwa algoritma Hutan Acak menunjukkan akurasi tertinggi sebesar 92,3%, mengungguli model lainnya dalam aspek presisi, recall, dan skor F1. Hal ini menandakan bahwa metode Hutan Acak unggul dalam mendeteksi pola dan faktor yang memperbesar risiko penyakit jantung. Penelitian ini berkontribusi pada pengembangan sistem diagnostik cerdas, yang dapat mendukung tenaga medis dalam pengambilan keputusan awal yang didasarkan pada bukti kuat. Kesimpulan dari studi ini menyoroti pentingnya memasukkan teknologi pembelajaran mesin ke dalam ekosistem layanan kesehatan digital guna meningkatkan ketepatan diagnosis dan memperbaiki hasil kesehatan pasien.