Posi, Patcharapol
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Bio-Based Modification of Natural Rubber-Modified Asphalt Using Hard Resin from Yang Sinthorn, Poramin; Tirapat, Supakorn; Katekaew, Somporn; Wongsa, Ampol; Posi, Patcharapol; Thongchom, Chanachai; Chindaprasirt, Prinya
Civil Engineering Journal Vol. 11 No. 11 (2025): November
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2025-011-11-018

Abstract

This study investigates the potential of hard resin derived from the Yang tree (HY), a renewable bio-based byproduct, as a performance-enhancing additive in natural rubber-modified asphalt (NRMA). HY-modified binders (HYMA) containing 3%, 7%, and 15% HY by weight were evaluated through a multi-scale experimental program, including physical, rheological, thermal, chemical, and mechanical tests. Standard binder characterizations (penetration, ductility, softening point, viscosity), spectroscopic analyses (FT-IR, NMR), microstructural observations (ESEM, XRD), thermal profiling (DSC), and performance assessments (DSR, Marshall) were conducted. The results demonstrated that HY improved binder properties at optimal concentration by introducing additional hydrocarbon structures without chemical cross-linking. HYMA3 achieved the most favorable balance of stiffness, flexibility, and compaction efficiency, whereas higher HY contents (≥7%) impaired structural integrity and deformation resistance. Microstructural and thermal evidence confirmed surface modifications and altered thermal transitions, which influenced viscoelastic response. These findings provide new insights into bio-resin–asphalt interactions and establish the viability of HY as a sustainable alternative to synthetic polymer modifiers. Beyond performance improvement, HY promotes circular construction by transforming agricultural byproducts into functional pavement materials, supporting the development of climate-adaptive infrastructure.
Strength Characteristics and Material Design of Recycled Flexible Pavement Materials Bubpi, Attaphol; Arngbunta, Anukun; Amornpinyo, Prach; Sirisriphet, Yongyuth; Tho-In, Tawatchai; Srichandum, Sakchai; Srirueng, Preechawut; Kampala, Apichit; Posi, Patcharapol; Chindaprasirt, Prinya
Civil Engineering Journal Vol. 11 No. 12 (2025): December
Publisher : Salehan Institute of Higher Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/CEJ-2025-011-12-021

Abstract

This study develops a strength-based mix-design framework for rehabilitating flexible pavements using reclaimed asphalt pavement (RAP) blended with crushed rock (CR) and cement. Objectives were to quantify 7-day unconfined compressive strength (UCS) as a function of mixture variables and to provide field-ready proportioning equations. Methods comprised laboratory testing of RAP–CR blends (RAP = 0–100%) with 2–5% cement, Modified Proctor compaction, and 7-day UCS; regression related UCS to a modified parameter (w/c)(1−k·AS), where asphalt content (AS) is obtained from AS = 0.04·RAP. Findings show that increasing RAP lowers dry density (2.31→2.11 g/cm³) and raises optimum moisture (5.03→7.17%). The 7-day prediction is qᵤ,7 = 23.44/[(w/c)(1−0.22·AS)]0.677 (R² = 0.863). A worked example (4-cm asphalt over a 20-cm base; 20-cm milling) gives RAP = 20%, AS = 0.80, recommended w/c = 1.31, and cement = 4.03% at OMC = 5.28% and dry density = 2.276 g/cm³, satisfying 1.72 MPa (17.5 kg/cm²) at 7 days. Novelty/Improvement: the framework consolidates RAP content and binder effects into a single modified w/c parameter, enabling rapid, transparent proportioning for construction control. Broader impacts include reduced demand for virgin aggregate and haul-off of demolition debris, fewer truck movements and landfill burdens, and potential life-cycle cost savings in network-level rehabilitation.