Claim Missing Document
Check
Articles

Found 2 Documents
Search

CIT-LieDetect: A Robust Deep Learning Framework for EEG-Based Deception Detection Using Concealed Information Test Nagale, Tanmayi; Khandare, Anand
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 8 No 1 (2026): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v8i1.1300

Abstract

Deception detection with electroencephalography (EEG) is still an open problem as a result of inter-individual variability of brain activity and neural dynamics of deceitful responses. Traditional methods fail to perform well in terms of consistent generalization, and as a result, research has ahifted towards exploring sophisticated deep learning methods for Concealed Information Tests (CIT). The objective of the present study is to categorize subjects as guilty or innocent based on EEG measurements and rigorously test model performance in terms of accuracy, sensitivity, and specificity. To achieve this, experiments were conducted on two EEG datasets: the LieWaves dataset, consisting of 27 subjects recorded with five channels (AF3, T7, Pz, T8, AF4), and the CIT dataset, comprising 79 subjects recorded with 16 channels (Fp1, Fp2, F3, F4, C3, C4, Cz, P3, P4, Pz, O1, O2, T3/T7, T4/T8, T5/P7, T6/P8). Preprocessing involved a band-pass filter for noise reduction, followed by feature extraction using the Discrete Wavelet Transform (DWT) and the Fast Fourier Transform (FFT). Three models were evaluated: FBC-EEGNet, InceptionTime-light, and their ensemble. Results indicate that InceptionTime-light achieved the highest accuracy of 79.2% on the CIT dataset, surpassing FBC-EEGNet (70.8%). On the LieWaves dataset, FBC-EEGNet achieved superior performance, with 71.6% accuracy, compared with InceptionTime-light (65.93%). In terms of specificity, FBC-EEGNet reached 93.7% on the CIT dataset, while InceptionTime-light demonstrated balanced performance with 62.5% sensitivity and 87.5% specificity. Notably, the ensemble model provided stable and generalizable outcomes, yielding 70.8% accuracy, 62.5% sensitivity, and 75% specificity on the CIT dataset, confirming its robustness across subject groups. In conclusion, FBC-EEGNet is effective for maximizing specificity, InceptionTime-light achieves higher accuracy, and the ensemble model delivers a balanced trade-off. The implications of this work are to advance reliable EEG-based deception detection and to set the stage for future research on explainable and interpretable models, validated on larger and more diverse datasets.
Optimized Metaheuristic Integrated Neuro-Fuzzy Deep Learning Framework for EEG-Based Lie Detection Nagale, Tanmayi; Khandare, Anand
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 8 No 1 (2026): January
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v8i1.1340

Abstract

EEG-based deception detection remains challenging due to three critical limitations: high inter-subject variability, which restricts generalization, the black-box nature of deep learning models that undermines forensic interpretability, and substantial computational overhead arising from high-dimensional multi-channel EEG data. Although recent state-of-the-art approaches report accuracies of 82–88%, they fail to provide the transparency required for legal and forensic admissibility. To address these limitations, this study aims to develop an accurate, computationally efficient, and explainable EEG-based deception detection framework suitable for real-world forensic applications. The primary contribution of this work is a novel hybrid neuro-fuzzy architecture that jointly integrates intelligent channel selection, complementary deep feature learning, and transparent fuzzy reasoning, enabling high performance without sacrificing interpretability. The proposed framework follows a five-stage pipeline: (1) intelligent channel selection using Type-2 fuzzy inference with ANFIS-based ranking and multi-objective evolutionary optimization (MOEA/D), reducing EEG dimensionality from 64 to 14 channels (78.1% reduction); (2) dual-path deep learning that combines EEGNet for spatial–temporal feature extraction with InceptionTime-Light for multi-scale temporal representations; (3) a fuzzy attention mechanism to generate interpretable feature importance weights; (4) an ANFIS-based classifier employing Takagi–Sugeno fuzzy rules for transparent decision-making; and (5) triple-level interpretability through channel importance visualization, attention-weighted features, and extractable linguistic rules. The framework is evaluated on two benchmark datasets, such as LieWaves (27 subjects, 5-channel EEG) and the Concealed Information Test (CIT) dataset (79 subjects, 16-channel EEG). Experimental results demonstrate superior performance, achieving 93.8% accuracy on LieWaves and 92.7% on the CIT dataset, representing an improvement of 5.3 % points over the previous best-performing methods, while maintaining balanced sensitivity (92.4%) and specificity (95.2%). In conclusion, this work establishes that neuro-fuzzy integration can simultaneously achieve high classification accuracy, computational efficiency, and forensic-grade explainability, thereby advancing the practical deployment of EEG-based deception detection systems in real-world forensic applications.