Elvis, Elvis
Universitas Internasional Batam

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Evaluasi Efektivitas Teknik Regularisasi Dalam Mengurangi Overfitting Pada Model CNN Prasetyo, Stefanus Eko; Haeruddin, Haeruddin; Elvis, Elvis
EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi Vol 15, No 2 (2025): December
Publisher : Universitas Bandar Lampung (UBL)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36448/expert.v15i2.4676

Abstract

Penelitian ini bertujuan mengevaluasi dan membandingkan efektivitas berbagai teknik regularisasi seperti regularisasi L1 dan L2, dropout, dan augmentasi data, baik secara terpisah maupun kombinasi, dalam mengatasi overfitting pada model Convolutional Neural Network (CNN) dalam skenario dataset terbatas. Keterbatasan dataset merupakan tantangan utama yang menyebabkan model CNN cenderung mengalami overfitting, di mana performa pada data pelatihan 97.95% akurasi jauh melebihi akurasi validasi 67%. Penelitian ini menggunakan arsitektur CNN dasar yang konsisten dan dataset CIFAR-10. Hasil pengujian teknik regularisasi tunggal menunjukkan bahwa augmentasi data adalah teknik yang paling optimal pada pengujian terpisah. Model dengan augmentasi data mencapai akurasi validasi tertinggi 78.18% dan kesenjangan generalisasi terendah 2.31% di antara semua teknik yang diuji. Sementara itu, ditemukan bahwa penggunaan tingkat regularisasi yang terlalu ekstrem pada teknik regularisasi L1/L2 dapat menyebabkan underfitting karena bobot dipaksa mendekati nolĀ  sehingga model kehilangan kapasitas belajar. Pencapaian kinerja model yang paling superior diperoleh melalui pendekatan kombinasi. Kombinasi antara augmentasi data dan regularisasi L2 menghasilkan akurasi validasi tertinggi sebesar 79.89% dengan kesenjangan generalisasi paling kecil, yaitu 0.38%. Dengan demikian, disimpulkan bahwa pendekatan kombinasi teknik regularisasi adalah strategi paling efektif untuk meningkatkan generalisasi model CNN pada lingkungan dengan dataset terbatas.