Budidaya salak (Salacca zalacca), sektor pertanian strategis di Indonesia, menghadapi tantangan efisiensi air akibat metode penyiraman manual yang tidak optimal. Praktik ini dapat menyebabkan stres tanaman dan penurunan produktivitas, diperburuk oleh perubahan iklim. Penelitian ini bertujuan untuk mengembangkan sistem penyiraman otomatis berbasis Internet of Things (IoT) untuk tanaman salak, yang dilengkapi monitoring real-time menggunakan platform Blynk. Sistem ini dirancang menggunakan metode waterfall, dengan mikrokontroler ESP32 sebagai pusat kendali, sensor kelembapan tanah, dan sensor suhu DHT22. Logika kontrol diatur dengan ambang batas spesifik: pompa air hanya aktif jika kelembapan tanah ≤30% DAN suhu udara >30°C. Ambang batas suhu ini didasarkan pada literatur suhu ideal tanaman salak. Hasil pengujian verifikasi (Tabel 4.1) menunjukkan sistem berfungsi 100% akurat di semua skenario pengujian. Sistem terbukti hanya aktif pada kondisi target (Kering & Panas) dan berhasil mengirimkan data real-time ke Blynk. Sistem IoT ini berhasil dikembangkan, berfungsi sesuai rancangan, dan memungkinkan petani memantau kondisi lahan dari jarak jauh.The cultivation of salak (Salacca zalacca), which is a strategic agricultural sector in Indonesia, faces challenges in water efficiency due to manual watering methods that are not optimal. These practices can cause plant stress and reduced productivity, and are further aggravated by climate change. This study aims to develop an automatic irrigation system for salak plants based on the Internet of Things (IoT), equipped with real-time monitoring using the Blynk platform. The system was designed using the waterfall method, with an ESP32 microcontroller as the main controller, a soil moisture sensor, and a DHT22 temperature sensor. The control logic is set with specific thresholds: the water pump operates only when soil moisture is ≤30% AND air temperature is >30°C. This temperature threshold is based on literature regarding the ideal temperature for salak plants. Verification test results (Table 4.1) show that the system functions with 100% accuracy in all testing scenarios. The system is proven to activate only under the target conditions (Dry & Hot) and successfully sends real-time data to Blynk. This IoT system was successfully developed, operates according to the design, and allows farmers to monitor field conditions remotely.