Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi Deep Learning Dalam Prediksi Real-Time Iradian Surya Liwijaya, Angga; Risma, Pola; Oktarina, Yurni; Dewi, Tresna
Journal of Applied Smart Electrical Network and Systems Vol. 6 No. 2 (2025): Vol. 6 No. 02 (2025): Vol 06, No. 02 Desember 2025
Publisher : Indonesian Society of Applied Science (ISAS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52158/pvdpsr36

Abstract

Accurate prediction of solar irradiance plays a critical role in the planning and operation of renewable energy systems, particularly for photovoltaic integration and energy management. This study investigates the use of a deep learning approach based solely on Convolutional Neural Networks (CNN) to forecast short-term solar irradiance values. The model is trained using normalized multivariate time series data, which include several meteorological parameters as input features. The CNN architecture is designed to extract temporal patterns from the input sequences and predict radiation intensity at the next time step. Experimental results show that the proposed model achieves strong predictive performance, with a Mean Squared Error (MSE) of 0.0006, Root Mean Squared Error (RMSE) of 0.0242, Mean Absolute Error (MAE) of 0.0184, and a coefficient of determination (R²) of 0.9607. These findings demonstrate that CNN, despite its simplicity, is capable of effectively learning complex temporal relationships in solar irradiance data. Furthermore, the loss curves for both training and validation sets indicate stable convergence without signs of overfitting. The results suggest that CNN-based forecasting models can offer a lightweight and accurate solution for real-time solar prediction applications, especially when computational resources are limited.