Claim Missing Document
Check
Articles

Found 1 Documents
Search

From YOLO V1 to YOLO V11: comparative analysis of YOLO algorithm (review) Beqqali Hassani, Imane; Benhida, Soufia; Lamii, Nabil; Oqaidi, Khalid; Ouiddad, Ahmed; Ghiadi, Soukaina
International Journal of Electrical and Computer Engineering (IJECE) Vol 16, No 1: February 2026
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v16i1.pp450-462

Abstract

Object detection in images or videos faces several challenges because the detection must be accurate, efficient and fast. The you only look once (YOLO) algorithm was invented to meet these criteria. But with the creation of several versions of this algorithm (from V1 to V11), it becomes difficult for researchers to choose the best one. The main objective of this review is to present and compare the eleven versions of the yolo algorithm in order to know when using the appropriate one for the study. The methodology used for this work is aligned with preferred reporting items for systematic reviews and meta-analyses (PRISMA) principles and the results demonstrate that the choice of the best version mainly depends on the priorities of the study. If the study prioritizes accuracy and detection of small objects, it should use YOLO V4, YOLO V5, YOLO V6, YOLO V7, YOLO V8, YOLO V9, YOLO V10 or YOLO V11. While studies that prioritize detection speed should use YOLO V5, YOLO V6, YOLO V7, YOLO V8, YOLO V10 or YOLO V11. In complex environment, researchers should avoid using YOLO V1, YOLO V2, YOLO V3, YOLO V5, YOLO V7 and YOLO V9. And researchers who are looking for a good accuracy and speed and a reduced number of parameters should use YOLO V10 or YOLO V11.