Claim Missing Document
Check
Articles

Found 2 Documents
Search

LITTERFALL, LITTER DECOMPOSITION AND NUTRIENT RETURN OF REHABILITATED MINING AREAS AND NATURAL FOREST IN PHANGNGA FORESTRY RESEARCH STATION, SOUTHERN THAILAND Wongprom, Jetsada; Poolsiri, Roongreang; Diloksumpun, Sapit; Ngernsaengsaruay, Chatchai; Tansakul, Samita; Chandaeng, Wasan
BIOTROPIA Vol. 29 No. 1 (2022): BIOTROPIA Vol. 29 No. 1 April 2022
Publisher : SEAMEO BIOTROP

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11598/btb.2022.29.1.1627

Abstract

Litterfall and litter decomposition play important roles in the maintenance of nutrient cycling and rehabilitation of degraded lands. Litterfall, litter decomposition and nutrient return were investigated in a 27-year-old Acacia mangium plantation on sandy and clay sites, and in a mixed plantation at the Phangnga Forestry Research Station, Phangnga Province, Thailand. Additionally, secondary and primary forests were investigated and compared with the values obtained from the Acacia mangium and the mixed plantations. The results indicated that litter production in A. mangium plantation on sandy and clay sites, and in mixed plantations (15.47, 11.68 and 7.89 t/ha/yr, respectively) was higher than that in the secondary and primary forests (6.34 and 6.92 t/ha/yr, respectively). The rate of litter decomposition was the greatest in the secondary forest (3.01/yr) and the lowest occurred in the primary forest (1.15/yr). The decomposition rate of the mixed leaf litter between native trees and A. mangium in plantations was higher than that of only A mangium leaf, except in the mixed plantations. A high initial nitrogen concentration in A. mangium could accelerate litter decomposition and improve litter quality in the mixed litter. In addition, the nutrient return in plantations was higher than that in the secondary and primary forests, especially for N. Increased litter production, high decomposition rate and nutrient return from A. mangium plantation had important roles in nutrient cycling, suggesting that a mixed plantation consisting of A. mangium and native trees should be considered for the reclamation of mining land.
EFFECT OF THINNING ON GROWTH AND WOOD PRODUCTION OF NATURALLY REGENERATED 8-YEAR-OLD ACACIA MANGIUM WILLD. PLANTATION ON ABANDONED MINING AREA, SOUTHERN THAILAND Wongprom, Jetsada; Maelim, Somporn; Chandaeng, Wasan; Teejuntuk, Sakhan; Sommeechai, Monthathip; Duangnamon, Decha
BIOTROPIA Vol. 30 No. 3 (2023): BIOTROPIA Vol. 30 No. 3 December 2023
Publisher : SEAMEO BIOTROP

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11598/btb.2023.30.3.1919

Abstract

Thinning is an important practice for promoting growth and maintaining forest plantation for wood production from the remaining trees. In this study, thinning was carried out in a naturally regenerated 8-year-old Acacia mangium plot in the Phangnga Forestry Research Station. Three thinning schemes, with 175 (T1), 300 (T2) and 600 (T3) remaining trees/ha, were compared with the control (no thinning) of 831 trees/ha. The diameter at breast height (DBH) and height (H) of the trees were measured. The differences in growth, current annual increment (CAI), aboveground biomass, and stem volume (V) were analyzed. We observed that the thinning of A. mangium increased the growth rate, with the DBH being clearly affected by thinning. CAIDBH increased significantly, with the DBH class of thinned A. mangium plots also improving after thinning. The stem volume and aboveground biomass of T3 plot was similar to the control plot after thinning. In addition, the number of large saw logs was the highest in T3 plot. The large saw logs can be used for multi-utilization and have a high value. These results suggest that thinning can promote stem growth, and increase the proportion of large saw logs in naturally regenerated A. mangium stands.