Kemiskinan merupakan isu multidimensi yang berdampak signifikan terhadap kualitas pembangunan wilayah, khususnya di Provinsi Jawa Tengah yang menempati urutan ketiga secara nasional. Meskipun data sosial ekonomi tersedia secara melimpah dan terbuka, pemanfaatannya untuk segmentasi wilayah serta perumusan kebijakan berbasis data, informasi, dan pengetahuan masih terbatas. Penelitian ini bertujuan untuk melakukan klasterisasi kabupaten/kota di Provinsi Jawa Tengah menggunakan algoritma K-Means, berdasarkan tujuh indikator utama sosial ekonomi: Indeks Pembangunan Manusia (IPM), proporsi penduduk miskin ekstrem (Prioritas 1), sangat miskin (Prioritas 2), pengeluaran per kapita, upah minimum kabupaten/kota (UMK), tingkat pengangguran terbuka, dan jumlah rumah tidak layak huni (RTLH). Data yang digunakan merupakan data sekunder tahun 2024 yang diperoleh dari Badan Pusat Statistik dan Dinas Sosial Provinsi Jawa Tengah dan telah melalui proses normalisasi. Penentuan jumlah klaster optimal dilakukan dengan metode Elbow, sedangkan Principal Component Analysis (PCA) digunakan sebagai teknik visualisasi. Pendekatan kuantitatif dan interpretatif ini memastikan bahwa klaster yang terbentuk bersifat optimal secara statistik, mudah dijelaskan secara visual, dan relevan untuk ditindaklanjuti dalam kebijakan. Hasil analisis menunjukkan terbentuknya tiga klaster wilayah dengan karakteristik sosial ekonomi yang berbeda secara signifikan, yaitu wilayah berkembang, wilayah transisi, dan wilayah prioritas pengentasan kemiskinan. Temuan hasil penelitian ini, yang mengintegrasikan multi-indikator sosial ekonomi dengan pendekatan visual dan analitis, mampu menghasilkan segmentasi wilayah yang lebih akurat dan aplikatif bagi penyusunan kebijakan pembangunan wilayah yang lebih berkeadilan, dengan penekanan pada intervensi intensif terhadap kabupaten/kota yang memiliki tingkat kemiskinan ekstrem dan sangat miskin.