KOC, Ismail
Prof. Dr. Ismail SARITAS

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Big Bang-Big Crunch Optimization Algorithm for Solving the Uncapacitated Facility Location Problem KOC, Ismail
International Journal of Intelligent Systems and Applications in Engineering 2016: Special Issue
Publisher : Prof. Dr. Ismail SARITAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18201/ijisae.2016Special Issue-146971

Abstract

The big bang–big crunch (BB–BC) algorithm has been proposed as a new optimization method based on the big bang and big crunch theory, one of the theories of the evolution of the universe. The BB-BC algorithm has been firstly presented to solve the optimization problems with continuous solutions space. If the solution space of the problem is binary-structural, the algorithm must be modified to solve this kind of the problems. Therefore, in this study, the BB-BC method, one of the population-based optimization algorithms, is modified to deal with binary optimization problems. The performance of the proposed methods is analyzed on uncapacitated facility location problems (UFLPs) which are one of the binary problems used in literature. The well-known small and medium twelve instances of UFLPs are used to analyze the performances and the effects of the control parameter of the BB-BC algorithm. The obtained results are comparatively presented. According to the experimental results, the binary version of the BB-BC method achieves successful results in solving UFLP in terms of solution quality.