KALINLI, Adem
Prof. Dr. Ismail SARITAS

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Training ANFIS Using Genetic Algorithm for Dynamic Systems Identification HAZNEDAR, Bülent; KALINLI, Adem
International Journal of Intelligent Systems and Applications in Engineering 2016: Special Issue
Publisher : Prof. Dr. Ismail SARITAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18201/ijisae.266053

Abstract

In this study, the premise and consequent parameters of ANFIS are optimized using Genetic Algorithm (GA) based on a population algorithm. The proposed approach is applied to the nonlinear dynamic system identification problem. The simulation results of the method are compared with the Backpropagation (BP) algorithm and the results of other methods that are available in the literature. With this study it was observed that the optimisation of ANFIS parameters using GA is more successful than the other methods.
A Comparative Study of Statistical and Artificial Intelligence based Classification Algorithms on Central Nervous System Cancer Microarray Gene Expression Data Arslan, Mustafa Turan; Kalinli, Adem
International Journal of Intelligent Systems and Applications in Engineering 2016: Special Issue
Publisher : Prof. Dr. Ismail SARITAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18201/ijisae.267094

Abstract

A variety of methods are used in order to classify cancer gene expression profiles based on microarray data. Especially, statistical methods such as Support Vector Machines (SVM), Decision Trees (DT) and Bayes are widely preferred to classify on microarray cancer data. However, the statistical methods can often be inadequate to solve problems which are based on particularly large-scale data such as DNA microarray data. Therefore, artificial intelligence-based methods have been used to classify on microarray data lately. We are interested in classifying microarray cancer gene expression by using both artificial intelligence based methods and statistical methods. In this study, Multi-Layer Perceptron (MLP), Radial basis Function Network (RBFNetwork) and Ant Colony Optimization Algorithm (ACO) have been used including statistical methods. The performances of these classification methods have been tested with validation methods such as v-fold validation. To reduce dimension of DNA microarray gene expression has been used Correlation-based Feature Selection (CFS) technique. According to the results obtained from experimental study, artificial intelligence-based classification methods exhibit better results than the statistical methods.