This Author published in this journals
All Journal Journal JCONES
Kurniawan, Nauval Zabidi
Institut Bisnis dan Informatika Stikom Surabaya

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

IDENTIFIKASI JENIS PENYAKIT DAUN TEMBAKAU MENGGUNAKAN METODE GRAY LEVEL CO-OCCURRENCE MATRIX (GLCM) DAN SUPPORT VECTOR MACHINE (SVM) Kurniawan, Nauval Zabidi; Rasmana, Susijanto Tri; Triwidyastuti, Yosefine
Journal of Control and Network Systems (JCONES) Vol 5, No 1 (2016)
Publisher : Journal of Control and Network Systems (JCONES)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tembakau merupakan salah satu hasil produk pertanian yang diproses dari bagian daun tanaman tembakau. Masyarakat secara umum hanya mengetahui bahwa tembakau merupakan bahan baku utama rokok, akan tetapi pada kenyataannya ada banyak manfaat lain dari daun tembakau, mulai dari melepaskan gigitan lintah hingga sebagai obat HIV/AIDS dan sebagai biofuel. Pada perkembangannya ada dua faktor yang mempengaruhi kualitas tanaman tersebut, yaitu hama dan penyakit. Untuk meminimalisir penurunan kualitas tembakau, diperlukan sebuah metode analisis yang mampu mendeteksi penyakit pada daun tembakau sedini mungkin. Pada penelitian ini dibuat sebuah sistem yang mampu mendeteksi penyakit daun tembakau sebagai bentuk dari pengembangan teknologi digital (pengolahan citra). Dalam penelitian sistem analisis ini digunakan metode Gray Level Co-occurrence Matrix (GLCM­) dengan memanfaatkan ekstraksi fitur – fitur sebuah citra dengan memperhatikan hubungan piksel ketetanggaan dan Support Vector Machine (SVM) sebagai pengklasifikasi jenis penyakit dengan bantuan kernel gaussian (rbf) dan polynomial. Pengujian sistem analisis ini menghasilkan tingkat keberhasilan yang beragam. Rata-rata tingkat keberhasilan pada sistem ini adalah 74% dengan persentase keberhasilan tertinggi 80% pada kernel polynomial dengan jarak piksel 1, 2, 3, 5 dan 6. Sedangkan persentase keberhasilan terkecil bernilai 63% pada kernel gaussian (rbf) dengan jarak piksel 1.