Knowledge Engineering and Data Science
Vol 2, No 1 (2019)

Crude Palm Oil Prediction Based on Backpropagation Neural Network Approach

Hijratul Aini (Unknown)
Haviluddin Haviluddin ((SCOPUS ID: 56596793000, Universitas Mulawarman))



Article Info

Publish Date
23 Jun 2019

Abstract

Crude palm oil (CPO) production at PT. Perkebunan Nusantara (PTPN) XIII from January 2015 to January 2018 have been treated. This paper aims to predict CPO production using intelligent algorithms called Backpropagation Neural Network (BPNN). The accuracy of prediction algorithms have been measured by mean square error (MSE). The experiment showed that the best hidden layer architecture (HLA) is 5-10-11-12-13-1 with learning function (LF) of trainlm, activation function (AF) of logsig and purelin, and learning rate (LR) of 0.5. This architecture has a good accuracy with MSE of 0.0643. The results showed that this model can predict CPO production in 2019.

Copyrights © 2019






Journal Info

Abbrev

keds

Publisher

Subject

Computer Science & IT Engineering

Description

Knowledge Engineering and Data Science (2597-4637), KEDS, brings together researchers, industry practitioners, and potential users, to promote collaborations, exchange ideas and practices, discuss new opportunities, and investigate analytics frameworks on data-driven and knowledge base ...