JITK (Jurnal Ilmu Pengetahuan dan Komputer)
Vol 3 No 1 (2017): JITK Issue August 2017

ANALISIS ALGORITMA PREDIKSI UNTUK MENGHASILKAN PREDIKSI BEBAN LISTRIK JANGKA PENDEK

Veti Apriana (Komputerisasi Akuntasi AMIK BSI Jakarta)
Rani Irma Handayani (Manajemen Informatika AMIK BSI Jakarta)



Article Info

Publish Date
15 Aug 2017

Abstract

Electricity is the lifeblood for human life, both for household and industrial world. In the power supply industry, it is important to determine the power requirements for the future as soon as possible (at the earliest). Short-term electric load prediction is one way that can be used to generate and distribute electrical energy economically so that the power provider can know the load and demand for power for the next month, previous short-term power prediction studies, generally using the Neural method Network. Neural Network is an information processing system that has characteristics similar to biological neural networks but, deficiencies in Neural Network often overfitting due to overtraining. In a short-term electrical load prediction study, using the Support Vector Machine (SVM) method, Support Vector Machines (SVM) is a technique for predicting both classification and regression. This research begins by processing daily load system load data with a time span of 30 minutes, with data input used is data in January 2017. The results show that the SVM method can be one of the reference methods for the prediction of short-term electrical load with RMSE 0.034.

Copyrights © 2017






Journal Info

Abbrev

jitk

Publisher

Subject

Computer Science & IT

Description

Kegiatan menonton film merupakan salah satu cara sederhana untuk menghibur diri dari rasa gundah gulana ataupun melepas rasa lelah setelah melakukan aktivitas sehari-hari. Akan tetapi, karena berbagai alasan terkadang seseorang tidak ada waktu untuk menonton film di bioskop. Dengan bantuan media ...