Journal of Information Technology and Computer Science
Vol. 4 No. 2: September 2019

Extreme Learning Machine Weight Optimization using Particle Swarm Optimization to Identify Sugar Cane Disease

Alauddin, Mukhammad Wildan (Unknown)
Mahmudy, Wayan Firdaus (Unknown)
Abadi, Abdul Latief (Unknown)



Article Info

Publish Date
30 Sep 2019

Abstract

Sugar cane disease is a major factor in reducing sugar cane yields. The low intensity of experts to go into the field to check the condition of sugar cane causes the handling of sugarcane disease tends to be slow. This problem can be solved by instilling expert intelligence on sugar cane into an expert system. In this study the method of classification of sugar cane disease was proposed using Extreme Learning Machine (ELM). However, ELM alone is not enough to classify multilabel and multiclass disease case data in this study. Therefore, it is proposed to optimize the weight of hidden neurons in ELM using Particle Swarm Optimization (PSO). The experimental results show that the classification using ELM alone can reach an accuracy rate of 71%. After the weight of hidden neurons from ELM was optimized, the accuracy rate became 79.92% or an increase of 8.92%.

Copyrights © 2019






Journal Info

Abbrev

jitecs

Publisher

Subject

Computer Science & IT Control & Systems Engineering Electrical & Electronics Engineering Engineering

Description

The Journal of Information Technology and Computer Science (JITeCS) is a peer-reviewed open access journal published by Faculty of Computer Science, Universitas Brawijaya (UB), Indonesia. The journal is an archival journal serving the scientist and engineer involved in all aspects of information ...