International Journal of Advances in Intelligent Informatics
Vol 5, No 3 (2019): November 2019

Improving learning vector quantization using data reduction

Pande Nyoman Ariyuda Semadi (Universitas Gadjah Mada)
Reza Pulungan (Universitas Gadjah Mada)



Article Info

Publish Date
22 Nov 2019

Abstract

Learning Vector Quantization (LVQ) is a supervised learning algorithm commonly used for statistical classification and pattern recognition. The competitive layer in LVQ studies the input vectors and classifies them into the correct classes. The amount of data involved in the learning process can be reduced by using data reduction methods. In this paper, we propose a data reduction method that uses geometrical proximity of the data. The basic idea is to drop sets of data that have many similarities and keep one representation for each set. By certain adjustments, the data reduction methods can decrease the amount of data involved in the learning process while still maintain the existing accuracy. The amount of data involved in the learning process can be reduced down to 33.22% for the abalone dataset and 55.02% for the bank marketing dataset, respectively.

Copyrights © 2019






Journal Info

Abbrev

IJAIN

Publisher

Subject

Computer Science & IT

Description

International journal of advances in intelligent informatics (IJAIN) e-ISSN: 2442-6571 is a peer reviewed open-access journal published three times a year in English-language, provides scientists and engineers throughout the world for the exchange and dissemination of theoretical and ...