Pande Nyoman Ariyuda Semadi
Universitas Gadjah Mada

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Improving learning vector quantization using data reduction Pande Nyoman Ariyuda Semadi; Reza Pulungan
International Journal of Advances in Intelligent Informatics Vol 5, No 3 (2019): November 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v5i3.330

Abstract

Learning Vector Quantization (LVQ) is a supervised learning algorithm commonly used for statistical classification and pattern recognition. The competitive layer in LVQ studies the input vectors and classifies them into the correct classes. The amount of data involved in the learning process can be reduced by using data reduction methods. In this paper, we propose a data reduction method that uses geometrical proximity of the data. The basic idea is to drop sets of data that have many similarities and keep one representation for each set. By certain adjustments, the data reduction methods can decrease the amount of data involved in the learning process while still maintain the existing accuracy. The amount of data involved in the learning process can be reduced down to 33.22% for the abalone dataset and 55.02% for the bank marketing dataset, respectively.