Sebuah graf G dengan orde p, size q dan faces dikatakan super $(a,d)$ face antimagic total labeling jika ada fungsi objektif $f:V(G)\bigcup E(G)\bigcup F(G)$ $\rightarrow \{1,2,...,p+q+s\}$, sedemikian hingga bobot sisinya $W_{s}=\{a_{s},a_{s}+d,a_{s}+2d,...,a_{s}+(f_{s}-1)d\}$ dapat membentuk barisan aritmatika dengan suku awal $a_{s}$, bedanya $d$ dan jumlah wajah sisinya $f_{s}$. Graf seperti itu disebut dengan super apabila label terkecil yang mungkin muncul dalam label titik-titiknya. Dalam penelitian ini, kita akan mengkaji super $(a,d)$ face antimagic total dari graf siklus dengan busur$C^{1}_6$}.
Copyrights © 2014