International Journal of Electrical and Computer Engineering
Vol 10, No 2: April 2020

Novel modelling of clustering for enhanced classification performance on gene expression data

Sudha V. (RNS Institute of Technology)
Girijamma H. A. (RNS Institute of Technology)



Article Info

Publish Date
01 Apr 2020

Abstract

Gene expression data is popularized for its capability to disclose various disease conditions. However, the conventional procedure to extract gene expression data itself incorporates various artifacts that offer challenges in diagnosis a complex disease indication and classification like cancer. Review of existing research approaches indicates that classification approaches are few to proven to be standard with respect to higher accuracy and applicable to gene expression data apart from unaddresed problems of computational complexity. Therefore, the proposed manuscript introduces a novel and simplified model capable using Graph Fourier Transform, Eigen Value and vector for offering better classification performance considering case study of microarray database, which is one typical example of gene expression data. The study outcome shows that proposed system offers comparatively better accuracy and reduced computational complexity with the existing clustering approaches.

Copyrights © 2020






Journal Info

Abbrev

IJECE

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

International Journal of Electrical and Computer Engineering (IJECE, ISSN: 2088-8708, a SCOPUS indexed Journal, SNIP: 1.001; SJR: 0.296; CiteScore: 0.99; SJR & CiteScore Q2 on both of the Electrical & Electronics Engineering, and Computer Science) is the official publication of the Institute of ...