Jurnal Ilmu Dasar
Vol 12 No 1 (2011)

Outlier Detection in Observation at Multivariate Linear Models with Likelihood Displacement Statistic-Lagrange Method

Makkulau Makkulau (Unknown)
Susanti Linuwih (Unknown)
Purhadi Purhadi (Unknown)
Muhammad Mashuri (Unknown)



Article Info

Publish Date
01 Jan 2011

Abstract

There are two different outliers, i.e outlier in observations and outlier in models. The existing outlier detection method in models is using common Likelihood method. The limitation of this method is the optimal value produced might be not the real optimal values. This research yields a method for outlier detection in multivariate linear models with Likelihood Displacement Statistic-Lagrange method (LDL method). This method uses multiplier Lagrange with constraint the confidence interval of parameter’s vector. This parameter’s vector is obtained from the data set which is outlier free. This parameter estimation process uses numerical method with Karush-Kuhn Tucker condition in nonlinear programming. This method compares between LDL value and the table F value that follows the distribution of F value to indentify the outlier in models.

Copyrights © 2011






Journal Info

Abbrev

JID

Publisher

Subject

Control & Systems Engineering Mathematics

Description

Jurnal ILMU DASAR (JID) is a national peer-reviewed and open access journal that publishes research papers encompasses all aspects of natural sciences including Mathematics, Physics, Chemistry and Biology. JID publishes 2 issues in 1 volume per year. First published, volume 1 issue 1, in January ...